The Reference Reach: A template for Natural Channel Design (NCD) and a tool to gauge ecological functional uplift

Barbara Doll, PE, Ph.D.,
Assistant Extension Professor and Extension Specialist
NC Sea Grant and Biological and Agricultural Engineering Department, NC
State University

Stream Restoration: Growing Science and Practice

North America

• > \$1 billion spent annually¹

North Carolina

- Tens of millions spent annually²
- Mitigation projects cost ~\$285 per linear foot³

Stream and River Restoration Research

¹Bernhardt et al., 2005, *Science*

²Miller and Kochel, 2010, Earth and Environmental Sciences

³Personal communication, NCDMS, Jeff Jurek

⁴Web of Science

Natural Channel Design

- Fluvial geomorphology based method for designing natural stable channels developed by Dave Rosgen
- Analogue procedure morphology measurements are scaled from a natural stable reference stream to determine the restoration design

The Reference Reach

- What makes a stream "reference quality"?
 - Dynamic equilibrium
 - Little to no incision
 - Well connected to floodplain
- Requires extensive survey of dimension, planform & profile
- Data is scaled from the reference stream to the design stream using dimensionless ratios

The Reference Reach: Data Collection

Channel Dimension

- A_{bkf} , W_{bkf} , D_{bkf} , D_{max} , ER, BHR
- A_{bkfp} , W_{bkfp} , D_{bkfp} , D_{maxp}

Planform Geometry

- Radius of Curvature, R_c
- Meander Length, L_m
- Meander Belt Width, W_{blt}

Longitudinal Profile

- Pool Length, L_p
- Pool to Pool Spacing, p-p
- Riffle Length, L_{rif}
- Riffle Slope, S_{rif}

Substrate

D₁₅, D₃₅, D₅₀, D₈₅

Stream mitigation policies

2008 Federal mitigation rule update

- Replace function (i.e. physical, chemical, and biological processes⁶)
- Evaluate projects using function-based performance standards⁷

NC Mitigation crediting

Prior to 2008 update:

- Restored linear feet and geomorphic uplift (physical processes only)⁸
- Credits linked to design effort, not results

Currently:

- Not uniformly based on function
- Credits remain linked to design effort, not results

Stream functions pyramid framework

Determine Functional Uplift

Performance

Range

Restored Streams

First, you must define the performance scale

Reference Reaches

Disturbed Channels

Research Questions

- What tools should be used to evaluate ecological functional uplift of restored streams?
- How do restored streams compare to high quality reference channels?
- What factors (e.g. watershed, landscape and design) influence the condition and function of restored streams?
- What innovative restoration approaches can be implemented to maximize ecological function?

Evaluating Rapid Assessments of Ecogeomorphological Condition of Restored Streams

Five stream assessment methods applied at 65 restored streams – EGA, SPA, RBP, RCE & SVAP

Assessment Methods

Acronym	Assessment Name	Source	Quantitative	Qualitative	Variables
EGA	Eco- geomorphological Assessment	NCSU	X	X	44
SPA	Stream Performance Assessment	NCSU		X	17
RBP	Rapid Bioassessment Protocol	EPA		X	13
RCE	Riparian, Channel and Environmental Inventory	Peterson (Sweden)		X	18
SVAP	Stream Visual Assessment Protocol	USDA		X	11

How well do the Stream Assessments predict stream biology?

- Response Variable: Macroinvertebrates:
- No. of dominant taxa
- No. of dominant EPT taxa
- EPT abundance
- Dominant taxa in common DIC (%)
- % shredders and predators
- Number of indicator taxa

Hypotheses:

 Prediction of Macroinvertebrate Indices can be improved by eliminating arbitrary variable weights and adding watershed factors.

Can Rapid Assessments Predict EPT Taxa?

- Eliminate arbitrary averaging and summing of variables & add watershed factors
- Re-weight variables and address collinearity of variables using ordination statistics (Principal Component Analysis)
- Apply Multiple Linear Regression using Principal Components that explain 70% of the variability

Conclusion

 Rapid stream assessments combined with watershed condition can be used to predict aquatic macroinvertebrate metrics in restored streams.

How does the condition of restored streams compare to high quality reference channels?

SPA applied at 156 Streams: 93 restored, 21 impaired, 29 reference quality, and 13 reference streams with minor incision

First 3 SPA PC's explain 57.5 % of variance n=156

Factor 1: Morphologic Condition

#	Variable	F1
15	Streambank condition	0.85
17	Floodplain function	0.78
16	Streambank vegetation	0.77
14	Sediment transport	0.72
6	Pattern	0.64

Factor 2: In-Stream Habitat

#	Variable	F2
10	Rootmats	0.82
11	Overhanging veg	0.74
8	Leaf packets	0.71
9	Undercut banks	0.68

Factor 3 - Bedform

#	Variable	F3
3	Riffles length slope	0.86
1	Riffles pools alternating	0.76
2	Riffles pools located	0.73
4	Riffles clean material	0.62

Stream functions pyramid framework

Stream quantification tool (SQT)

Functiona Category	Measurement Method	Functional Category	Measurement Method	
	Curve Number		Total Nitrogen	
Hydrologi	No. of Concentrated Flow Points		Total Phosphorus	
	Soil Compaction	Physico-	Leaf Litter Processing Rate OR	
Hydraulio	Bank Height Ratio	chemical	Percent Shredders	
Hyuraun	Entrenchment Ratio		Fecal Coliform	
	LWD Index		Summer Daily Max. Temp.	
	Large Woody Debris Piece Count		NC Biotic Index for	
	Erosion Rate		Macroinvertebrates	
	Dominant BEHI/NBS	Biological	EPT Index	
	Percent Streambank Erosion		NC Index of Biotic Integrity for	
	Canopy Coverage		Fish	
	Buffer Width			
Geomorph	ic Basal Area			
	Stem Density		Watershed Catchment	
	Pool Spacing Ratio	Potential	Assessment	
	Pool Depth Ratio			
	Percent Riffle	Total SQT Variables = 28		
	Aggradation Ratio			
	Sinuosity			
	Size Class Pebble Count Analyzer			

Research questions

Does the NC SQT accurately detect and quantify ecological function?

1. How accurately does the SQT measure restoration success?

2. What is the **natural variability range** for stream function-based variables in the NC Piedmont?

3. Which function-based variables **correlate** best with **"good" biological composition**?

Site locations and selection

- DEQ DMS geomorphic reference sites (n=18)
- DEQ DWR biological reference site (n=1)
- Paired restored & degraded sites (n=12; 6 pairs)
- DAs < 8.6 sq. mi.
- Watershed land use range
- Stream orders 1 3
- Restored sites > 5 years old

Functional Category	Measurement Method	Functional Category	Measurement Method
	Curve Number		Total Nitrogen
Hydrologic	No. of Concentrated Flow Points		Total Phosphorus
	Soil Compaction	•	Leaf Litter Processing Rate OR
Hydraulic	Bank Height Ratio		Percent Shredders
	Entrenchment Ratio		Fecal Coliform
	LWD Index		Summer Daily Max . Temp .
	Large Woody Debris Piece Count		NC Biotic Index for
	Erosion Rate		Macroinvertebrates
	Dominant BEHI/NBS	Biological	
	Percent Streambank Erosion		NC Index of Biotic Integrity for
	Canopy Coverage		Fish
	Buffer Width	Restoration	Watershed Catchment
Geomorphic			Assessment
	Stem Density		
	Pool Spacing Ratio	+	ariables = 21
	Pool Depth Ratio		
	Percent Riffle	(out of	28 total variables)
	Aggradation Ratio		
	Sinuosity		
	Size Class Pebble Count Analyzer		

Reference Reaches (DMS and DWR; ranked from smallest to greatest Overall Functional Score)

Range of SQT Overall Scores and Functional Category Scores

■ SQT Total Score ■ Hydrologic ■ Hydraulic ■ Geomorphic ■ Physicochemical ■ Biological 0.9 0.8 0.7 **Functional Score** 0.6 0.5 0.4 0.3 0.2 0.1 0 **Functional Categories**

Soil Compaction

Pool-to-Pool Spacing Ratio (C and E streams)

■P-P Spacing Ratio

Next steps

- Evaluate statistical relationships between landscape (i.e. hydrologic) and design (i.e. hydraulic and geomorphic) variables and benthic macroinvertebrate community metrics (i.e. EPT Richness, BI)
- Identify landscape and design predictor variables of "good" biological composition
- Develop significance weights for SQT variables based on degree to which a variable supports "good" biological composition

Acknowledgements

- Faculty
 - Greg Jennings
 - Jean Spooner
- Staff
 - Dave Penrose
 - Cameron Jernigan
 - Jamie Blackwell
 - Michael Shaffer
 - Karen Hall
 - Lara Rozzell
 - Dan Clinton

- Students
 - Sara Donatich
 - Jonathan Page
 - Joseph Usset
 - Mark Fernandez
- Funding:
 - NC Clean WaterManagement Trust Fund
 - Environmental Defense Fund
 - NC Division of Mitigation
 Services