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National Hydrologic Model (cont.) 
• Simulation of hydrologic processes across the country 

 Incorporates multiple models 

 Monthly time-step rainfall-runoff, daily time-step deterministic 

watershed hydrology, coupled groundwater-surface water, energy-

flux based stream temperature  

 Assimilate best available national-extent data for model forcing and 

parameters 

 Tools to disseminate data and information to the public 
 

 

McCabe and Markstrom, 2007 
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Monthly Water Balance Model Futures Portal 

https://my.usgs.gov/mows/ 

Bock and others, 2016c 

Plots  

To Screen 

Download plot 

(.png) or data (.csv) 
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• Selection for hydrologic response units, summary nodes,  

    and streamgages 
 

Spatial Summary Type 

Local 

(HRU) 
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• Selection for hydrologic response units, summary nodes,  

    and streamgages 
 

Spatial Summary Type 

Upstream  

Accumulated 

Local 

(HRU) 
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Variable of Interest 

• Simulated runoff (RO) 

summarized locally for 

hydrologic response units; 

simulated streamflow 

(STRM) along the stream 

network at summary 

nodes 

• Temperature = degrees 

Celsius (oC) 

• All other variables = 

millimeters (depth per unit 

area) 

 

by  

HRU 

by  

Summary node 
 

(SWE) 
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SWE:   

Snow Water  

Equivalent 

McCabe and Markstrom, 2007, Bock and others, 2016c 



Runs (Climate Dataset Selection) 

Climate  

dataset 

selection 
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Downscaled General Circulation Models (GCMs) 

  

Future 

Historical 

• One portion of GCM is historical conditions, and one portion is future 

conditions 
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Downscaled General Circulation Models (GCMs) 

  

Future 

Historical 

Hayhoe and others,  
2008 

Local Observations GCMs Statistically downscaled 
GCMs  

• One portion of GCM is historical conditions, and one portion is future 

conditions 

• Statistical Downscaling: develop statistical relationships between 

observed climate variables and the coarse-scale GCM variables  

• Can be used for finer-scale applications 

Hayhoe and others,  
2008 
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Dataset # of Datasets Period of record on Portal 

Gridded station data1 1 1952-2005 (historical) 

BCSD CMIP32   1952-2005 (historical) 

SRES b1   32 2020-2099 (future) 

SRES a1b   33 

SRES a2   29 

BCSD CMIP53   1952-2005 (historical) 

RCP 4.5   52 2020-2099 (future) 

RCP 6.0   25 

RCP 8.5   50 

MWBM Futures Database 

1Maurer and others, 2002,  
2Bureau of Reclamation, 2011, 3Bureau of Reclamation, 2013 

• Bias-corrected spatially disaggregated (BCSD) general circulation 

models (GCM) 

• Includes ancillary data and other model components 

Bock and others, 2016a; Bock and others, 2016b Slide 8 



Dataset # of Datasets Period of record on Portal 

Gridded station data1 1 1952-2005 (historical) 

BCSD CMIP32   1952-2005 (historical) 

SRES b1   32 2020-2099 (future) 

SRES a1b   33 

SRES a2   29 

BCSD CMIP53   1952-2005 (historical) 

RCP 4.5   52 2020-2099 (future) 

RCP 6.0   25 

RCP 8.5   50 

MWBM Futures Database 

1Maurer and others, 2002,  
2Bureau of Reclamation, 2011, 3Bureau of Reclamation, 2013 

• Bias-corrected spatially disaggregated (BCSD) general circulation 

models (GCM) 

• Includes ancillary data and other model components 

Bock and others, 2016a; Bock and others, 2016b Slide 8 



Dataset # of Datasets Period of record on Portal 

Gridded station data1 1 1952-2005 (historical) 

BCSD CMIP32   1952-2005 (historical) 

SRES b1   32 2020-2099 (future) 

SRES a1b   33 

SRES a2   29 

BCSD CMIP53   1952-2005 (historical) 

RCP 4.5   52 2020-2099 (future) 

RCP 6.0   25 

RCP 8.5   50 

MWBM Futures Database 

1Maurer and others, 2002,  
2Bureau of Reclamation, 2011, 3Bureau of Reclamation, 2013 

• Bias-corrected spatially disaggregated (BCSD) general circulation 

models (GCM) 

• Includes ancillary data and other model components 

Bock and others, 2016a; Bock and others, 2016b Slide 8 



Runs (Climate Dataset Selection) (cont.) 

Selection interface for plots based on  

historical conditions members) 

by GCM/Model 

Group 
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Runs (Climate Dataset Selection) (cont.) 

Selection interface for plots 

based on future conditions 

by GCM 

Emission Scenario 

Model Group 
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Historical Conditions:  Mean Monthly Plots 
 • Plotting MWBM 

variables during 

historical conditions 

(1952 through 2005) 
 

• Line for each GCM 

simulation, with thick 

line denoting the median 

of the historical  

    conditions 
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Future Conditions:  Envelope Plots 
 

 

• Plotting MWBM variables for 

future conditions (2020 through 

2099) 

 

• Change from historical 

conditions into the future 

 

• Envelope bracketing min/max 

of each emission scenario 

ensemble, with single line  

     denoting the median of each    

     ensemble 

 

• Each emission scenario given 

its own color 

 

• Several unique arguments 
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Future Conditions:  Box Plots 
 

 
• Monthly or seasonal variability 

for GCMs of a single emission 

scenario around three future 

time periods (2030, 2060, and 

2090)  compared to a baseline 

(red line, the median of    

     the climate simulations in the    

     chosen emission scenario  

     [SRES] or representative   

     concentration pathways [RCP]) 

 

• 2000: 1995 through 2005 

     2030: 2025 through 2035 

     2060: 2045 through 2055 

     2090: 2085 through 2095 
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Future Conditions:  Box Plots 
 

 
• Monthly or seasonal variability 

for GCMs of a single emission 
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Sub-setting Climate Dataset Selections 
• Portal uses the Kolmogorov-Smirnov (KS) test (Conover, 1971) to subset 

GCM selection to those that best reproduce past conditions (Hay and 

others, 2014) 

 

• Compares empirical cumulative distribution of downscaled GCM simulation data 

and that of the station-based dataset (GSD)  used for the downscaling procedure 

 
 

• Chosen climate simulations not meeting KS test p-value thresholds are 

withheld from plotting data and attributed in the time series csv 

GSD 

GCM 

Slide 13 Hay and others, 2014;  Hay and others, 2017 (in prep.) 



Sub-setting Climate Dataset Selections (cont.) 

• Number of downscaled GCM 

simulations that meet the KS 

test threshold are noted  

     in the plot annotation  and csv   

     header (plots based on KS test  

     p-value of 0.01) 

Slide 14 Hay and others, 2014;  Hay and others, 2017 (in prep.) 



Sub-setting Climate Dataset Selections (cont.) 

• Number of downscaled GCM 

simulations that meet the KS 

test threshold are noted  

     in the plot annotation  and csv   

     header (plots based on KS test  

     p-value of 0.01) 
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Sub-setting Climate Dataset Selections 
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CMIP3, Precipitation 

CMIP3, Runoff 

CMIP5, Precipitation 

CMIP5, Runoff 

Percent of 

downscaled 

general circulation 

models (GCMs) 

that replicate 

historic conditions 

across MWBM 

variables (using a 

KS test p-value 

threshold of 0.05). 
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Associated Products 

• Journal Articles 

 

Bock, A.R., Hay, L.E., McCabe, G.J., Markstrom, S.L., and Atkinson, R.D., 2016a, Parameter 

regionalization of a monthly water balance model for the conterminous United States: Hydrology 

and Earth System Sciences, v. 20, p. 2861–2876. 

 

McCabe, G.J., Hay, L.E., Bock, A.R., Markstrom, S.L., and Atkinson, R.D., 2015, Inter-annual 

and spatial variability of Hamon potential evapotranspiration model coefficients: Journal of 

Hydrology, v. 521, p. 389–394. 

 

Hay, L.E., Bock, A.R., McCabe, G.J., and Markstrom, S.L., Do Downscaled General Circulation 

Models Reliably Simulated Current Climatic Conditions? (In Prep.) 

 

• USGS Data Products  

 

Monthly Water Balance Model Futures Portal:  https://my.usgs.gov/mows/ 
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Associated Products 

• USGS Data Products (continued) 
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• USGS Information Products  

 

Bock, A.R., 2017, The U.S. Geological Survey Monthly Water Balance Model Futures Portal: 
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Geological Survey Monthly Water Balance Model Futures Portal: U.S. Geological Survey Open-
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Potential Impacts on Ecological Resources 
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South Fork of the Flathead River, MT 
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South Fork of the Flathead River, MT 
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Pederson and others, 2006 

Examine potential future streamflow using two different baselines for comparison 

Wetter 
 Drier 

South Fork of the Flathead River, MT 
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S.Fork Flathead River (potential future scenarios, 2020-2090) 

Examine potential future streamflow using two different baselines for comparison 

Drier Baseline 
1955-1977 

Wetter Baseline 
1977-2000 
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S.Fork Flathead River (potential future scenarios, 2030/60/90) 
 

 
 

 
 
 

• Potential higher winter, lower summer flows,  
     and lower SWE throughout the year 
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S.Fork Flathead River (potential future scenarios, 2030/60/90) 
 

 
 

 
 
 

• Potential higher winter, lower summer flows,  
     and lower SWE throughout the year 

• Potential winter increase in 
precipitation 

• Potential decrease in 
amount of precipitation 
falling as snow, lower 
ability to retain snowpack,  
due to higher TAVE 
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Northern Illinois 
 

 
 

 
 
 

• Regional, bond-funded  programs that 

emphasize aquatic restoration and biodiversity 

 

• Heavy corn and soybean agriculture  
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Ecological Impacts-  Nippersink Creek 
 

 
 

 
 
 

Evaluate Changes in Future runoff from contributing HRUS 

-Increase in median precipitation for RCP 4.5 and 8.5 

-Mixed trends for runoff 

 

Slide 25 



Ecological Impacts-  Nippersink Creek 
 

 
 

 
 
 

Evaluate Changes in Future runoff from contributing HRUS 

-Increase in median precipitation for RCP 4.5 and 8.5 

-Mixed trends for runoff 

-Increase in median actual evapotranspiration (driven by increasing temperature) 
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Kishwaukee River  

 
 

 
 
 

Evaluate potential changes in summer streamflow and air temperature for RCP8.5 

heelsplitter 

mucket 

pimpelback 
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Kishwaukee River  

 
 

 
 
 

Evaluate potential changes in summer streamflow and air temperature for RCP8.5 

-How well does the model simulate streamflow for historic conditions? 

-What is the range of projected summer air temperature for potential future conditions under RCP 

8.5? 

-What is the range of projected streamflows under RCP 8.5? 

~4o  Higher 
than 1971-2000  
average  
Potentially under  
RCP 8.5   

Decreased flows 
during summer 
period potentially 
under RCP 8.5 
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Kishwaukee River  

 
 

 
 
 

Evaluate potential changes in summer streamflow and air temperature for RCP8.5 

-How well does the model simulate streamflow for historic conditions? 

-What is the range of projected summer air temperature for potential future conditions under RCP 

8.5? 

-What is the range of projected streamflows under RCP 8.5? 

~4o  Higher 
than 1971-2000  
average  
Potentially under  
RCP 8.5   
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Potential Effects on 

Recreational Resources  
 
 

 
 

 
 
 

Monarch Ski Area 

Elev. – 10,790 to 11,960 feet 

Average Snowfall = 400 in./year (1971-2000) 

Brown’s Canyon 

Co. rafting industry  

550,861 users in 2016 
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Monarch Ski Area (historical conditions, 1952  - 2005 ) 

What’s going on for historical conditions? 
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Monarch Ski Area (historical conditions, 1952  - 2005 ) 

What’s going on for historical conditions? 
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Monarch Ski Area (historical conditions, 1952  - 2005 ) 

What’s going on for historical conditions? 
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Monarch Ski Area (historical conditions, 1952  - 2005 ) 

What’s going on for historical conditions? 
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Monarch Ski Area (potential future scenarios, 2020 - 2099) 

What does the data tell us about SWE under modeled potential future climate projections? 

• Variability in PPT 

• Increase in TAVE 

• Decrease in SWE 
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Monarch Ski Area (potential future scenarios, 2020 - 2099) 

What does the data tell us about SWE under modeled potential future climate projections? 

• Variability in PPT 

• Increase in TAVE 

• Decrease in SWE 
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Monarch Ski Area (potential future scenarios, 2030/60/90) 

What does potential SWE look like for ski season? 
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Brown’s Canyon (historical conditions, 1952 - 2005) 

Upstream  
Accumulation 
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Brown’s Canyon (historical conditions, 1952 - 2005) 

Upstream  
Accumulation 
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Brown’s Canyon (potential future scenarios, 2030/60/90) 

Under the most mild CMIP5 scenario (RCP 4.5), potential 

period of peak flows is earlier in the season 
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