[DOC] Distributed Cooperative Control Of Ac Microgrids By Ali

As recognized, adventure as capably as experience virtually lesson, amusement, as competently as concurrence can be gotten by just checking out a books distributed cooperative control of ac microgrids by ali plus it is not directly done, you could allow even more in the region of this life, on the order of the world.

We offer you this proper as with ease as easy way to get those all. We present distributed cooperative control of ac microgrids by ali and numerous books collections from fictions to scientific research in any way. accompanied by them is this distributed cooperative control of ac microgrids by ali that can be your partner.

cover the control of microgrids containing

Distributed Cooperative Control of AC Microgrids - Ali Bidram - 2014
In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks

inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

Distributed Cooperative Control of AC Microgrids - Ali Bidram - 2014
In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is
distribution. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.

Distributed Cooperative Control of Hybrid Ac/dc Microgrid - Rasel Mahmud - 2019

Distributed Cooperative Control of Hybrid Ac/dc Microgrid - Rasel Mahmud - 2019

Cooperative Synchronization in Distributed Microgrid Control - Ali Bidram - 2017-02-09
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.

Distributed Cooperative Control of Hybrid Ac/dc Microgrid - Rasel Mahmud - 2019

Distributed Cooperative Control of Hybrid Ac/dc Microgrid - Rasel Mahmud - 2019

Cooperative Synchronization in Distributed Microgrid Control - Ali Bidram - 2017-02-24
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.
Distributed Cooperative Control and Communication for Multi-agent Systems
- Dong Yue -

Distributed Cooperative Control and Communication for Multi-agent Systems
- Dong Yue -

Distributed Cooperative Control of Multi-agent Systems
- Wenwu Yu - 2017-05-01
A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective. Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems. Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors. Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control.

Distributed Cooperative Control of Multi-agent Systems
- Wenwu Yu - 2017-05-01
A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective. Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems. Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors. Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control.

Cooperative Synchronization in Distributed Microgrid Control
- Ali Bidram - 2017-02-24
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.

Cooperative Synchronization in Distributed Microgrid Control
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.

Cooperative Optimal Control of Hybrid Energy Systems
- Dong Yue -

Cooperative Optimal Control of Hybrid Energy Systems
- Dong Yue -
Cooperative Synchronization in Distributed Microgrid Control - Ali Bidram - 2018-06-28
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Cornell and MIT, presents cutting edge results in professionals working with power and energy systems. Presents the latest research advancements on the technical aspects of microgrid design, control, and operation; Brings together viewpoints from electricity distribution companies, aggregators, power market retailers, and power generation companies; Includes cutting-edge case studies providing effective solutions to challenges faced by power system operators.

Cooperative Control of Distributed Multi-Agent Systems - Jeff Shamma - 2008-02-28
The paradigm of ‘multi-agent’ cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech, Cornell and MIT, presents cutting edge results in terms of the “dimensions” of cooperative control from leading researchers worldwide. This dimensional decomposition allows the reader to assess the multi-faceted landscape of cooperative control. Cooperative Control of Distributed Multi-Agent Systems is organized into four main themes, or dimensions, of cooperative control: distributed control and computation, adversarial interactions, uncertain evolution and complexity management. The military application of autonomous vehicles systems or multiple unmanned vehicles is primarily targeted; however much of the material is relevant to a broader range of multi-agent systems including cooperative robotics, distributed computing, sensor networks and data network congestion control. Cooperative Control of Distributed Multi-Agent Systems offers the reader an organized presentation of a variety of recent research advances, supporting software and experimental data on the resolution of the cooperative control problem. It will appeal to senior academics, researchers and graduate students as well as engineers working in the areas of cooperative systems, control and optimization.

Advanced Approaches, Business Models, and Novel Techniques for Management and Control of Smart Grids - Pierluigi Siano - 2020-12-29
The current power system should be renovated to fulfill social and industrial requests and economic advances. Hence, providing economic, green, and sustainable energy are key goals of advanced societies. In order to meet these goals, recent features of smart grid technologies need to have the potential to improve reliability, flexibility, efficiency, and resiliency. This book aims to address the mentioned challenges by introducing advanced approaches, business models, and novel techniques for the management and control of future smart grids.

Cooperative Control of Distributed Multi-Agent Systems - Jeff Shamma - 2008-02-28
The paradigm of ‘multi-agent’ cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech,
Applications of Power Electronics - Frede Blaabjerg - 2019-06-24
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and smart control of power electronics in devices, microgrids, and at system levels.

Hierarchical and Cooperative Control of Complex Distributed Systems - Martin Jilg - 2018-02-07
In this thesis, a theory of hierarchical and cooperative feedback control for spatially distributed, physically interconnected systems is developed. A particular requirement is that the resulting control laws are suitable for a distributed implementation, meaning that the subsystems are equipped with local controllers and exchange information via a communication network. Distributed control schemes steadily gain practical significance, since an ever increasing number of technical systems, like power networks or manufacturing systems, is comprised of an interconnection of subsystems. In combination with competitive, powerful embedded computers and modern communication technology, a distributed implementation of control algorithms intuitively makes sense for such types of systems.

Hierarchical and Cooperative Control of Complex Distributed Systems - Martin Jilg - 2018-02-07
In this thesis, a theory of hierarchical and cooperative feedback control for spatially distributed, physically interconnected systems is developed. A particular requirement is that the resulting control laws are suitable for a distributed implementation, meaning that the subsystems are equipped with local controllers and exchange information via a communication network. Distributed control schemes steadily gain practical significance, since an ever increasing number of technical systems, like power networks or manufacturing systems, is comprised of an interconnection of subsystems. In combination with competitive, powerful embedded computers and modern communication technology, a distributed implementation of control algorithms intuitively makes sense for such types of systems.
Advances in Artificial Systems for Power Engineering - Zhengbing Hu - 2021
This book comprises refereed papers presented at The International Conference on Artificial Intelligence and Power Engineering (AIPE2020), held in Moscow, Russia, on December 25-27, 2020. The book’s conference’s general scope covers the latest advances for the development of artificial intelligence systems and their applications in various fields from power engineering to biology and education. Given the rapid development of artificial intelligence systems, the book emphasizes the need for the intensification of training of a growing number of relevant specialists, in particular, in energy and power engineering to increase the effectiveness of creation and diagnosing of appropriate technical solutions. In digital artificial intelligence systems, scientists endeavor to reproduce the innate intellectual abilities of humans and other organisms. The in-depth study of biological and self-organizing systems provides new approaches to create more and more effective artificial intelligence methods. Topics of the included papers concern thematic materials in the following spheres: mathematics and computer algorithms; analysis of some technical solutions; technological and educational approaches. The book is a compilation of state-of-the-art papers in the field, covering a comprehensive range of subjects that are relevant to business managers and engineering professionals alike. The breadth and depth of these proceedings make them an excellent resource for asset management practitioners, researchers, and academics, as well as undergraduate and postgraduate students interested in artificial intelligence systems and their growing applications. The intended readership includes specialists, students, and other circles of readers who would like to know where artificial intelligence systems can be applied in the future with great benefit.

Distributed Consensus in Multi-vehicle Cooperative Control - Wei Ren - 2007-10-27
Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.
the Energy Internet, providing a reference for aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.

Energy Internet and We-Energy - Qiuye Sun - 2018-07-12
This book focuses on the framework and implementation of energy integration systems with energy and smart-control technologies. It describes in detail We-Energy, a novel energy interaction mode based on a cyber-physical-economy-energy model, which can be adopted to solve the problem of energy supply and utilization. It then analyzes the key devices and technologies for developing the Energy Internet, such as converters, energy-conversion devices, system-level connection devices, optimization control strategies, cyber-physical system security, energy-system stability, communication technologies’ operating modes and distributed optimization algorithms, to enable readers to gain a comprehensive understanding of the topic. Lastly, it offers an outlook on the development of the Energy Internet, providing a reference for cross-integration between different disciplines. The book is an indispensable resource for power enterprises, manufacturers in the power-supply industry, and researchers in the field of Energy Internet application. It is also useful for university and college teachers and students seeking to deepen their understanding of the Energy Internet, as well as for readers interested in the Energy Internet correlation techniques.

Control and Optimization of Distributed Generation Systems - Magdi S. Mahmoud - 2015-05-14
This text is an introduction to the use of control in distributed power generation. It shows the reader how reliable control can be achieved so as to realize the potential of small networks of diverse energy sources, either singly or in coordination, for meeting concerns of energy cost, energy security and environmental protection. The book demonstrates how such microgrids, interconnecting groups of generating units and loads within a local area, can be an effective means of balancing electrical supply and demand. It takes advantage of the ability to connect and disconnect microgrids from the main body of the power grid to give flexibility in response to special events, planned or unplanned. In order to capture the main opportunities for expanding the power grid and to present the plethora of associated open problems in control theory Control and Optimization of Distributed Generation Systems is organized to treat three key themes, namely: system architecture and integration; modelling and analysis; and communications and control. Each chapter makes use of examples and simulations and appropriate problems to help the reader study. Tools helpful to the reader in accessing the mathematical analysis presented within the main body of the book are given in an appendix. Control and Optimization of Distributed Generation Systems will enable readers new to the field of distributed power generation and networked control, whether experienced academic migrating from another field or graduate student beginning a research career, to familiarize themselves with the important points of the control and regulation of microgrids. It will also be useful for practising power engineers wishing to keep abreast of changes in power grids necessitated by the diversification of generating methods.
multi-agent systems, the protocols are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) protocols using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs. Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.

Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System - Keyurkumar Patel - 2020-08-27
This book presents few novel Discrete-time Sliding Mode (DSM) protocols for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The protocols intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the protocols are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) protocols using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs. Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.

Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System - Keyurkumar Patel - 2020-08-27
This book presents few novel Discrete-time Sliding Mode (DSM) protocols for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The protocols intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the protocols are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) protocols using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs. Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.
security, supervisory and monitoring, diagnostics is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs. Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.

Integration of AC/DC Microgrids into Power Grids - Fazel Mohammadi - 2020-12-02
AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmentally-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems.

Cooperative Control of Multi-Agent Systems - Frank L. Lewis - 2013-12-31
Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed.
Cooperative Control of Multi-Agent Systems
- Frank L. Lewis - 2013-12-31
Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.

Flexible and Active Distribution Networks
- Peng Li - 2021-08-02
Flexible and Active Distribution Networks - Peng Li - 2021-08-02
Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control
- Bo Huang - 2016-07-15
On the basis of instrument electrical and automatic control system, the 5th International Conference on Electrical Engineering and Automatic Control (CEEAC) was established at the crossroads of information technology and control technology, and seeks to effectively apply information technology to a sweeping trend that views control as the core of intelligent manufacturing and life. This book takes a look forward into advanced manufacturing development, an area shaped by intelligent manufacturing. It highlights the application and promotion of process control represented by traditional industries, such as the steel industry and petrochemical industry; the technical equipment and system cooperative control represented by robot technology and multi-axis CNC; and the control and support of emerging process technologies represented by laser melting and stacking, as well as the emerging industry represented by sustainable and intelligent life. The book places particular emphasis on the micro-segments field, such as intelligent micro-grids, new energy vehicles, and the Internet of Things.

Microgrids
- Amjad Anvari-Moghaddam - 2021-04-16
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy
addressing emerging concepts, methodologies day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.

Microgrids - Amjad Anvari-Moghaddam - 2021-04-16
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.

Distributed Control Methods and Cyber Security Issues in Microgrids - Wenchao Meng - 2020-03-22
Distributed Control and Cyber Security Issues in Microgrids presents a thorough treatment of distributed control methods and cyber security issues for power system researchers and engineers. With the help of mathematical tools, this reference gives a deep understanding of microgrids and new research directions, addressing emerging concepts, methodologies and applications of monitoring, control and protection in smart microgrids with large-scale renewables. With the integration of more distributed or aggregated renewables and the wide utilization of power electronic devices, the smart microgrid is facing new stability and security challenges. Includes global case studies to demonstrate distributed control success stories Offers detailed illustrations and flowcharts to address challenges and technical solutions for those working in power systems in utilities and industry Showcases new challenges faced in the stability and security of smart microgrids.

Microgrids - Amjad Anvari-Moghaddam - 2021-05-21
Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids

Distributed Control Methods and Cyber Security Issues in Microgrids - Wenchao Meng - 2020-03-22
Distributed Control and Cyber Security Issues in Microgrids presents a thorough treatment of distributed control methods and cyber security issues for power system researchers and engineers. With the help of mathematical tools, this reference gives a deep understanding of microgrids and new research directions,
On Distributed and Cooperative Control
energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems.

Microgrids - Amjad Anvari-Moghaddam - 2021-05-21
Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems.

On Distributed and Cooperative Control Design for Networks of Dynamical Systems - Georg Seyboth - 2016-06-17
This thesis contributes to the development of a cooperative control theory for homogeneous and heterogeneous multi-agent systems consisting of identical and non-identical dynamical agents, respectively. The goal is to explain fundamental effects of non-identical agent dynamics on the behavior of a distributed system and, primarily, to develop suitable control design methods for a wide range of multi-agent coordination problems. Output synchronization problems as well as cooperative disturbance rejection and reference tracking problems in multi-agent systems are investigated. Suitable controller design methods for networks consisting of identical or non-identical linear time-invariant systems, linear parameter-varying systems, and selected classes of nonlinear systems are developed. These controller design methods provide a solution to a wide variety of distributed coordination and cooperative control scenarios.

Variable-Structure Systems and Sliding-Mode Control - Martin Steinberger - 2020-02-10
The book covers the latest theoretical results and sophisticated applications in the field of variable-structure systems and sliding-mode control. This book is divided into four parts. Part I discusses new higher-order sliding-mode algorithms, including new homogeneous controllers and differentiators. Part II then explores properties of continuous sliding-mode algorithms, such as saturated feedback control, reaching time, and orbital stability. Part III is focused on the usage of variable-structure systems (VSS) controllers for solving other control problems, for example unmatched disturbances. Finally, Part IV discusses applications of VSS; these include applications within power electronics and vehicle platooning. Variable-structure Systems and Sliding-Mode Control will be of interest to academic researchers, students and practising engineers.

Design for Networks of Dynamical Systems - Georg Seyboth - 2016-06-17
This thesis contributes to the development of a cooperative control theory for homogeneous and heterogeneous multi-agent systems consisting of identical and non-identical dynamical agents, respectively. The goal is to explain fundamental effects of non-identical agent dynamics on the behavior of a distributed system and, primarily, to develop suitable control design methods for a wide range of multi-agent coordination problems. Output synchronization problems as well as cooperative disturbance rejection and reference tracking problems in multi-agent systems are investigated. Suitable controller design methods for networks consisting of identical or non-identical linear time-invariant systems, linear parameter-varying systems, and selected classes of nonlinear systems are developed. These controller design methods provide a solution to a wide variety of distributed coordination and cooperative control scenarios.
continuous sliding-mode algorithms, such as saturated feedback control, reaching time, and orbital stability. Part III is focused on the usage of variable-structure systems (VSS) controllers for solving other control problems, for example unmatched disturbances. Finally, Part IV discusses applications of VSS; these include applications within power electronics and vehicle platooning. Variable-structure Systems and Sliding-Mode Control will be of interest to academic researchers, students and practising engineers.

Distributed Power Generation Scheduling, Modelling and Expansion Planning - Javier Contreras - 2021-06-02

Distributed generation is becoming more important in electrical power systems due to the decentralization of energy production. Within this new paradigm, new approaches for the operation and planning of distributed power generation are yet to be explored. This book deals with distributed energy resources, such as renewable-based distributed generators and energy storage units, among others, considering their operation, scheduling, and planning. Moreover, other interesting aspects such as demand response, electric vehicles, aggregators, and microgrid are also analyzed. All these aspects constitute a new paradigm that is explored in this Special Issue.

Distributed Power Generation Scheduling, Modelling and Expansion Planning - Javier Contreras - 2021-06-02

Distributed generation is becoming more important in electrical power systems due to the decentralization of energy production. Within this new paradigm, new approaches for the operation and planning of distributed power generation are yet to be explored. This book deals with distributed energy resources, such as renewable-based distributed generators and energy storage units, among others, considering their operation, scheduling, and planning. Moreover, other interesting aspects such as demand response, electric vehicles, aggregators, and microgrid are also analyzed. All these aspects constitute a new paradigm that is explored in this Special Issue.

The Proceedings present the scientific contributions of the Conference "Micro Perspectives for Decentralized Energy Supply" from 23rd till 24th of April in Bangalore, India. The papers cover a broad range of topics ranging from technical challenges of decentralized energy supply and concepts for solar DC micro grids till financing and business models for the implementation of those innovative technologies. The volume also contains contributions about planning and governance strategies, historical analyses of the infrastructural development and technology assessments. With case studies on decentralised energy supply from e.g. India, Bangladesh, Egypt, Ethiopia, Kenya, Nigeria, Tanzania and Brazil the papers give a good overview of the development of this sector all over the world.
Microgrids Design and Implementation - Antonio Carlos Zambroni de Souza - 2018-11-29
This book addresses the emerging trend of smart grids in power systems. It discusses the advent of smart grids and selected technical implications; further, by combining the perspectives of researchers from Europe and South America, the book captures the status quo of and approaches to smart grids in a wide range of countries. It describes the basic concepts, enabling readers to understand the theoretical aspects behind smart grid formation, while also examining current challenges and philosophical discussions. Like the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term – the “prosumer” – is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.

Microgrid Dynamics and Control - Hassan Bevrani - 2017-07-18
This book discusses relevant microgrid technologies in the context of integrating renewable energy and also addresses challenging issues. The authors summarize long term academic and research outcomes and contributions. In addition, this book is influenced by the authors’ practical experiences on microgrids (MGs), electric network monitoring, and control and power electronic systems. A thorough discussion of the basic principles of the MG modeling and operating issues is provided. The MG structure, types, operating modes, modelling, dynamics, and control levels are covered. Recent advances in DC microgrids, virtual synchronousgenerators, MG planning and energy management are examined. The physical constraints and engineering aspects of the MGs are covered, and developed robust and intelligent control strategies are discussed using real time simulations and experimental studies.
of renewable energy, power electronics, energy the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term – the “prosumer” – is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.

Modeling and Control of Power Electronic Converters for Microgrid Applications - Yang Han - 2021-08-27
This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.

Distributed Control and Optimization Technologies in Smart Grid Systems - Fanghong Guo - 2017-11-09
The book aims to equalize the theoretical involvement with industrial practicality and build a bridge between academia and industry by reducing the mathematical difficulties. It provides an overview of distributed control and distributed optimization theory, followed by specific details on industrial applications to smart grid systems, with a special focus on microgrid systems. Each of the chapters is written and organized with an introductory section tailored to provide the essential background of the theories required. The text includes industrial applications to realistic renewable energy systems problems and illustrates the application of proposed toolsets to control and optimization of smart grid systems.

Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems - Dmitri Vinnikov - 2021-02-26
Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level,
update for academics, researchers, and farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems - Dmitri Vinnikov - 2021-02-26

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems - Farkhondeh Jabari - 2020-07-09

This book presents design principles, performance assessment and robust optimization of different poly-generation systems using renewable energy sources and storage technologies. Uncertainties associated with demands or the intermittent nature of renewables are considered in decision making processes. Economic and environmental benefits of these systems in comparison with traditional fossil fuels based ones are also provided. Case studies, numerical results, discussions, and concluding remarks have been presented for each proposed system/strategy. This book is a useful tool for students, researchers, and engineers trying to design and evaluate different zero-energy and zero-emission stand-alone grids.

Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems - Farkhondeh Jabari - 2020-07-09

This book presents design principles, performance assessment and robust optimization of different poly-generation systems using renewable energy sources and storage technologies. Uncertainties associated with demands or the intermittent nature of renewables are considered in decision making processes. Economic and environmental benefits of these systems in comparison with traditional fossil fuels based ones are also provided. Case studies, numerical results, discussions, and concluding remarks have been presented for each proposed system/strategy. This book is a useful tool for students, researchers, and engineers trying to design and evaluate different zero-energy and zero-emission stand-alone grids.

Advances in Renewable Energies and Power Quality - Manuel Pérez-Donsión - 2020-02-13

This volume brings together contributions dealing with renewable energies and power quality, presented over five years of the International Conference on Renewable Energy and Power Quality (ICREPQ). It contains a selection of the best papers and original contributions presenting state-of-the-art research
Including some of the leading authorities in their areas of expertise, the contributors to the volume are drawn from across the globe, with about 300 authors from 60 different countries.

Advances in Renewable Energies and Power Quality - Manuel Pérez-Donsión - 2020-02-13
This volume brings together contributions dealing with renewable energies and power quality, presented over five years of the International Conference on Renewable Energy and Power Quality (ICREPQ). It contains a selection of the best papers and original contributions presenting state-of-the-art research in the field of renewable energy sources. Including some of the leading authorities in their areas of expertise, the contributors to the volume are drawn from across the globe, with about 300 authors from 60 different countries.

Cooperative Control - Vijay Kumar - 2004-10-20
Are there universal principles of coordinated group motion and if so what might they be? This carefully edited book presents how natural groupings such as fish schools, bird flocks, deer herds etc. coordinate themselves and move so flawlessly, often without an apparent leader or any form of centralized control. It shows how the underlying principles of cooperative control may be used for groups of mobile autonomous agents to help enable a large group of autonomous robotic vehicles in the air, on land or sea or underwater, to collectively accomplish useful tasks such as distributed, adaptive scientific data gathering, search and rescue, or reconnaissance.

A compendium of the authors' recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.
between fundamental cooperative control theory and applications to real problems. It presents systematic treatment of event-triggered and model-based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.

Cooperative Control of Multi-Agent Systems
- Yue Wang - 2017-05-08

A comprehensive review of the state of the art in the control of multi-agent systems theory and applications The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems. Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice — illustrated within the context of highly-realistic scenarios of high-level missions — without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control. Establishes a bridge and specific problems of interest in a wide range of applications areas Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.
identification, coordination under uncertainty and coverage control. Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas. Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more. Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications. Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems. The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.