

www.coastalresilience.org

NYC Tidal Marsh Assessment:

Condition, Vulnerability and Opportunities for Restoration & Advancement

Nicole Maher¹, Stephen Lloyd¹, Lauren Alleman¹, Christopher Haight², Marit Larson², Rebecca Swadek², Ellen K. Hartig², and Helen M. Forgione³

The Nature Conservancy ¹
NYC Parks - Natural Resources Group ²
Natural Areas Conservancy ³

MISSION AND GOALS

The Natural Areas Conservancy exists to restore and conserve the blue and green spaces of New York City in order to enhance the lives of all New Yorkers.

- Advance science-based regional planning
- 2. Ensure **healthy forest systems**
- 3. Promote and improve **coastal** resilience
- 4. Cultivate volunteerism and community engagement

Forests & Uplands: 7000 acres, 53 Parks, 1142 plots Freshwater Wetlands: Over 300 acres, 3 Boroughs, 17 Watersheds, 22 wetlands Salt Marshes: 1500 acres, 25 Marsh Complexes, 4 Boroughs Social Assessments: 9503 acres, 1,600 Interviews FWW Study Areas NACSMA Tidal Wetlands Upland Study Areas SSA Zones Parks

How can we maximize long-term viability of fringing salt marsh in NYC?

- Assess condition of largest marshes citywide
- Evaluate vulnerability to sea-level rise (SLR)
 - Rapid ecological assessment
 - Sea Level Affecting Marshes Model
 - Conditions and vulnerability indices
- Identify and prioritize restoration & protection opportunities

Calculating the Condition Index from a wealth of available data

- Mid-Atlantic Tidal Wetlands Rapid Assessment Method (Mid-TRAM)
- Salt Marsh Ecological assessment (NACSMA)
- Site Specific Intensive Monitoring (SSIM)
- Marsh Loss analysis (1974 2012)
- Sea Level Affecting Marshes Model (Warren Pinnacle, NYSERDA)

Overall Condition Score

ID	Complex Name	Score
BQ1.1	Hutchinson Outer	-0.07
BQ1.2	Hutchinson Inner	0.27
BQZ	Pelham Bay Cove	0.49
BQ3	Turtle Cove	0.21
BQ4	Westchester Creek	-0.58
BQ5	Pugsley Creek Marsh	-0.59
BQ6	Udall's Cove Marsh	0.06
BQ7.1	Alley Creek Outer	-0.07
BQ7.2	Alley Creek Inner	0.59
JB1.1	Idlewild Marsh Outer	-0.64
JB1.2	Idlewild Marsh Inner	-0.17
JB2	Spring Creek	-0.42
JB3	Fresh Creek Marsh	-0.22
JB4	Four Sparrow	0.56
SI1	Arlington Marsh	-0.38
SI2.1	Saw Mill Creek Outer	0.40
SI2.2	Saw Mill Creek Inner	0.36
SI3.1	Neck Creek Outer	0.01
SI3.2	Neck Creek Inner	0.16
SI4.1	W. T. Davis Outer	0.72
SI4.2	W. T. Davis Inner	-0.11
SI5	Richmond Creek	0.42
SI6	Fresh Kills Marsh	-0.13
SI7.1	Lemon Creek Outer	-0.79
SI7.2	Lemon Creek Inner	-0.08

Map Key

& The Nature Conservancy

Calculating the Vulnerability Index from a wealth of available data

- Mid-Atlantic Tidal Wetlands Rapid Assessment Method (Mid-TRAM)
- Salt Marsh Ecological assessment (NACSMA)
- Site Specific Intensive Monitoring (SSIM)
- Marsh Loss analysis (1974 2012)
- Sea Level Affecting Marshes Model (Warren Pinnacle, NYSERDA)

Overall Vulnerability Score

ID	Complex Name	Score
BQ1.1	Hutchinson Outer	-0.33
BQ1.2	Hutchinson Inner	-0.93
BQ2	Pelham Bay Cove	-0.25
BQ3	Turtle Cove	0.27
BQ4	Westchester Creek	0.65
BQ5	Pugsley Creek Marsh	1.49
BQ6	Udall's Cove Marsh	0.96
BQ7.1	Alley Creek Outer	0.22
BQ7.2	Alley Creek Inner	-0.04
JB1.1	Idlewild Marsh Outer	-0.09
JB1.2	Idlewild Marsh Inner	-0.43
JB2	Spring Creek	0.67
JB3	Fresh Creek Marsh	0.74
JB4	Four Sparrow	-0.34
SI1	Arlington Marsh	-0.03
SI2.1	Saw Mill Creek Outer	-0.15
SI2.2	Saw Mill Creek Inner	-0.85
SI3.1	Neck Creek Outer	0.07
SI3.2	Neck Creek Inner	-0.54
SI4.1	W. T. Davis Outer	-0.76
SI4.2	W. T. Davis Inner	-0.52
SIS	Richmond Creek	-0.65
SI6	Fresh Kills Marsh	0.06
517.1	Lemon Creek Outer	0.65
SI7.2	Lemon Creek Inner	0.12

Мар Кеу

& The Nature Conservancy

Saw Mill Inner (SI2.2) - Saw Mill Creek Marsh, Staten Island

Marsh Condition vs. Vulnerability

Identification & Prioritization of Restoration Opportunities

- Acquisition/Transfer of adjacent marsh parcels and future Marsh Migration Zones
- Removal of barriers to marsh migration: Flooded Developed
- Elevation of marsh surface to add elevation capital and increase productivity
- Rebuilding of Marsh Edge in places where the marsh has retreated from the 1974
 Tidal Wetlands Inventory line

All lead to increasing the long-term viability & function of NYC saltmarshes in the study area

Marsh Advancement Barriers

Hutchinson Inner

500 1,000 Fee

Elevation Enhancement for marshes with low elevation capital

Rebuild Marsh Edge to 1974 Extent

Acquisition/ Transfer

All Sites (25)

	1 01100 (=0	/
	Current	Future
Owner	Marsh (ac)	Marsh (ac)
NYC Parks	864	+204
Private	21	+29
Other	37	124
Govt.	3/	+24

Increase Marsh Surface Elevation

Restore flooded hard surfaces

Future flooded hard surfaces

Parking Lots* = 29 ac

Roads = 7 ac

Other Hard Surfaces = 6 ac

Total = 42 ac

Restore Eroded Marsh Edge

^{*} Mostly Orchard Beach parking lot in Pelham Bay Park, the Bronx

Watershed Recommendations

Focus on watershed – specific needs

SI - Acquire and transfer parcels

JB - Restore elevation

LIS - Address edge extension uncertainty

Strategy for marsh conservation depends on articulated goals, landscape context, time horizon, and socioeconomic factors

- 1. Preserve existing marshes and marsh migration zones so that these systems can persist and function into the future.
- 2. Prioritize high condition / low vulnerability marshes through best management practices and these 4 conservation strategies as needed.
- 3. Pursue opportunities for intermediate condition / high vulnerability marshes and even some low condition / high vulnerability marshes as indicated by their needs and where other factors (human dimensions, etc.) predominate.

Recommendations

- Pilot new approaches to wetland protection and restoration:
 - Shoreline protection and waterward restoration
 - Elevation / sand enhancement
- Expand funding and leveraging opportunities
 - ☐ Small mitigation project fund
- Protect future marsh migration areas (reduce impervious area in parks, use existing regulations, acquisition, easements)
- Expand assessment approach to include non-Parks properties

Dynamic Marsh Management Tool

Tool Demo (Components of Utility)

Benefits at 2100

Peconic Estuary Climate Ready Assessment Services

North Atlantic Aquatic Protecting nature. Preserving life. Connectivity Collaborative

New York

Improving Road-Stream Crossings

Bridges & Culverts: Stream and Tidal Connectivity

Risk Reduction Capacity of Wetlands

Suggested citation

Narayan, S., Beck, M.W., Wilson, P., Thomas, C., Guerrero, A., Shepard, C., Reguero, B.G., Franco, G., Ingram, C.J., Trespalacios, D. 2016. Coastal Wetlands and Flood Damage Reduction: Using Risk Industry-based Models to Assess Natural Defenses in the Northeastern USA. Lloyd's Tercentenary Research Foundation, London.

Corresponding author

www.lloyds.com/coastalresilience

Dr. Michael W. Beck, mwbeck@ucsc.edu, mbeck@tnc.org

COASTAL WETLANDS AND FLOOD DAMAGE REDUCTION

Using Risk Industry-based Models to Assess Natural Defenses in the Northeastern USA

October 2016

New Video Series Focused on Long Island Water Quality

VIEW TRAILER

JIM'S SOLUTION SW NASSAU COUNTY

WE'RE OYSTER FARMERS MONTAUK

ANSWERS & SOLUTIONS
HUNTINGTON

GENERATIONS SHELTER ISLAND

ON DISPLAY BELLPORT

IT'S IMPERATIVE MASTIC BEACH

SOMETHING LOST OAKDALE

COLLAPSE OF A LEGACY NORTH SEA

Web link is www.nature.org/longislandwater

G. Basso, K. O'Brien, M. Albino Hegeman and V. O'Neill. 2015. Status and trends of wetlands in the Long Island Sound Area: 130 year assessment. U.S. Department of the Interior, Fish and Wildlife Service. (36 p.)

Incremental Benefit of Adaptation Strategies

NYC Parks