Harvesting of Stream Sediment and Associated Phosphorus

Ken Potter 9/16/14

Introduction

About half of agriculturally-derived phosphorus reaching the Yahara Lakes is associated with sediment, particularly fine-grained sediments resulting from soil erosion.

US EPA

Introduction

The time required for sediment entering a stream to reach the lakes varies from hours to years to centuries, because

- Storms have relatively short durations;
- Flat stream segments trap sediment in small to medium events;
- Bridges create conditions that favor sediment trapping.

Matthew Boyington

Under what circumstances is it cost-effective to trap and remove sediment stored in stream segments?

A Case Study: Dorn and Six-Mile Creek Watersheds

2013 UW-Water Resources Management Practicum

Sediment Harvesting Opportunities in the Dorn and Six-Mile Creek Watersheds

2013 UW-Water Resources Management Practicum

Sediment Harvesting via Wetlands

- In glaciated Wisconsin there are numerous wetlands through which streams pass.
- Research indicates that the streams are preferential locations for sediment trapping.

Matthew Boyington

Sediment Harvesting from Wetlands

 Streams flowing through such wetlands overflow many times each year; however as sediment is trapped, the frequency of overbank flows decreases

 The channels flowing through wetlands only temporarily store sediment.

Matthew Boyington

2013 Water Resources Management Practicum: Upper Dorn Creek Wetland

Upper Dorn Creek Wetland

Stream Restoration for Water Quality

Analysis by the **2013 WRM Practicum** has estimated that

- Removal of about a half meter of sediment from a 5-acre portion of the Dorn Creek Wetland above Meffert Road would result in removal of about 300 lbs. of phosphorus per year over a period of about 25 years.
- Periodic removal of vegetation would enable removal of some dissolved phosphorus.

Earlier Case Study: Pecatonica Floodplain Restoration

Pre-Restoration

Eric Booth

Post-Restoration

Eric Booth

Pecatonica Floodplain Restoration

Eric Booth

Environmental Considerations

 "Restoring" natural systems to enhance sediment and phosphorus trapping is contentious.

 However, one could argue that such projects are simply restoring the ecosystem function of water quality improvement.

Audience Participation

Additional WRM Recommendations: Dredging at Bridges

2013 UW-Water Resources Management Practicum

Sediment Removal at Bridges

 Good opportunity for reducing sediment/ phosphorus transport to lakes

 New bridges could be designed to facilitate sediment/phosphorus trapping and removal.

Additional WRM Recommendation: Mary Lake on Six Mile Creek

Preliminary Estimates:

Phosphorus stored: 2,000 kg

P concentration: 1,400 mg/kg

WRM

Questions?