Hydrology Calibration with PRISM

Mindy Ramsey

TMDL Program Manager, WVDEP- DWWM

Watershed Assessment Branch, 601 57th Street SE,

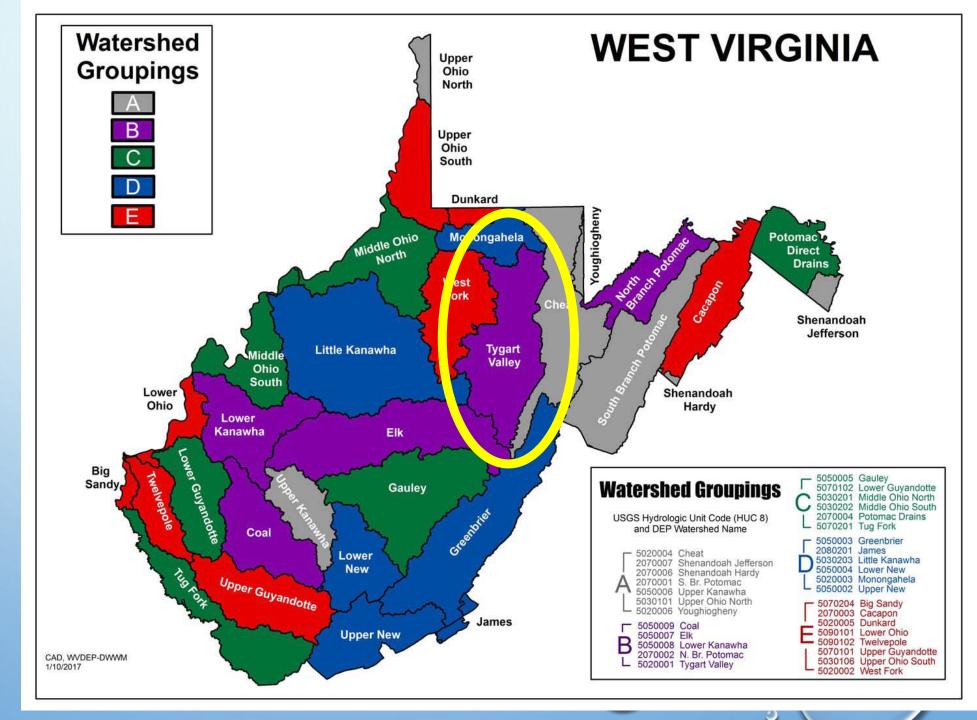
Charleston, WV 25304

Mindy.S.Ramsey@wv.gov, 304.926.0499 x1063

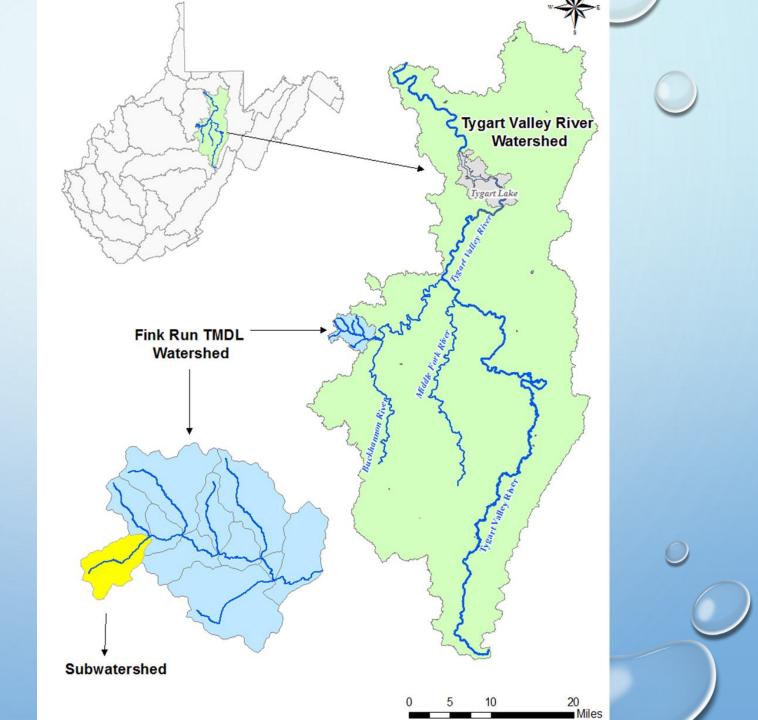
ACKNOWLEDGMENT

TETRA TECH, INC.

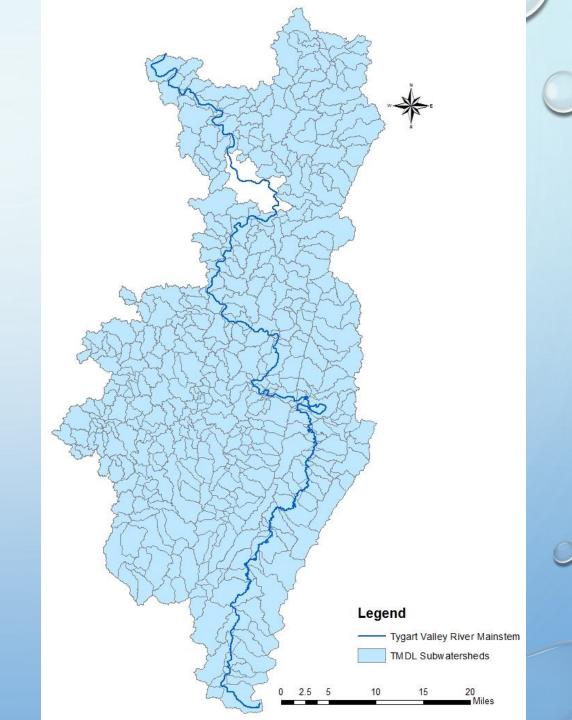
- Mustafa Faizullabhoy, PE
- John Beckman


WVDEP TMDL Program

- Consent Decree late 1990's → WV TMDL Program → 5,000+ EPA Approved TMDLs
 - Fecal coliform
 - Total iron and sediment
 - pH/dissolved aluminum
 - selenium, chloride, manganese
- Watershed Framework Assessment/TMDL development on 8-digit HUC
 - Average 300 Pre-TMDL Monitoring Stations/Year
- Subwatershed delineation


WATERSHED GROUPINGS

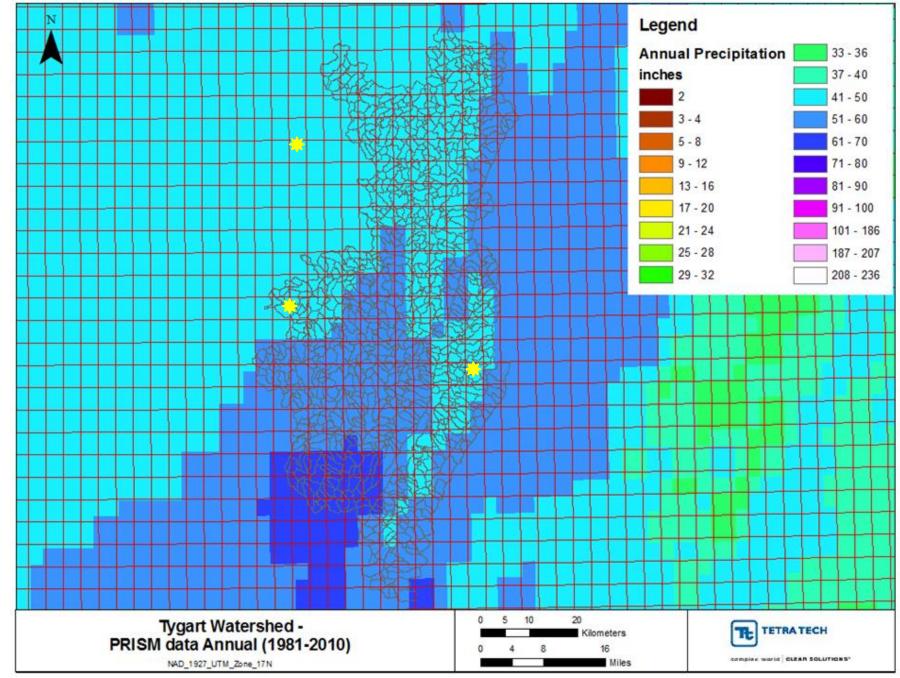
Tygart Valley River
 Watershed


SUBWATERSHEDS

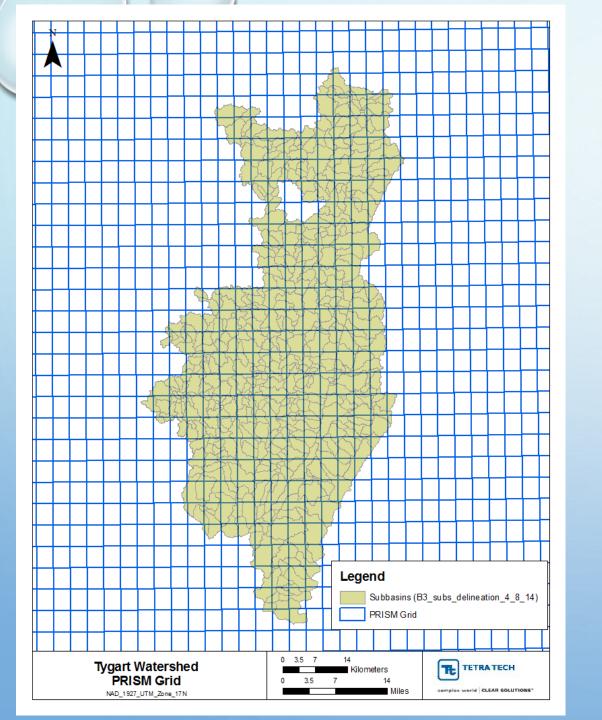
SUBWATERSHEDS

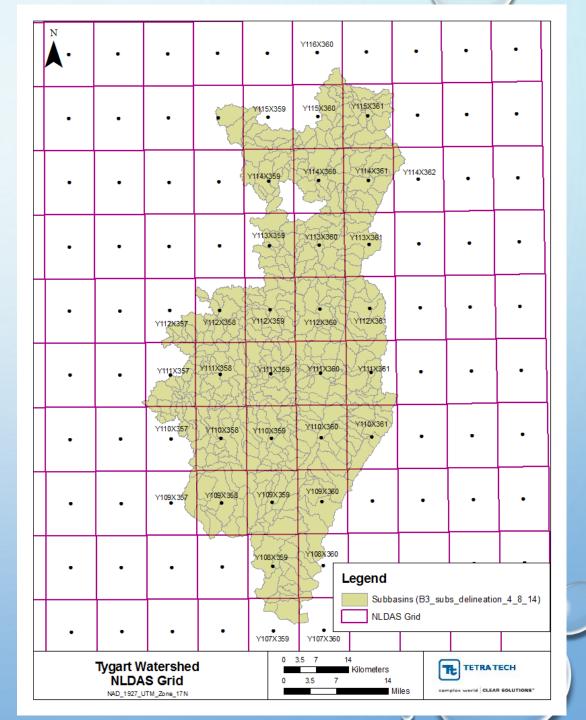
- 520 in Tygart Valley River
- Flow South to North
- 1,375 square miles
- Elevation 4,746 feet 863 feet

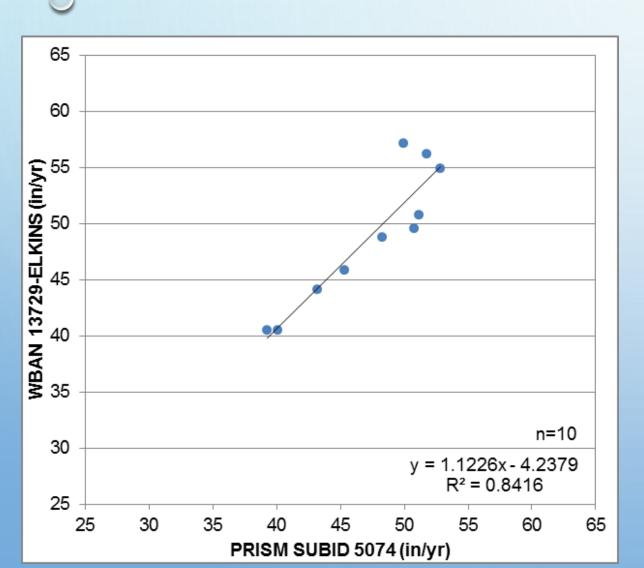
WATERSHED MODEL

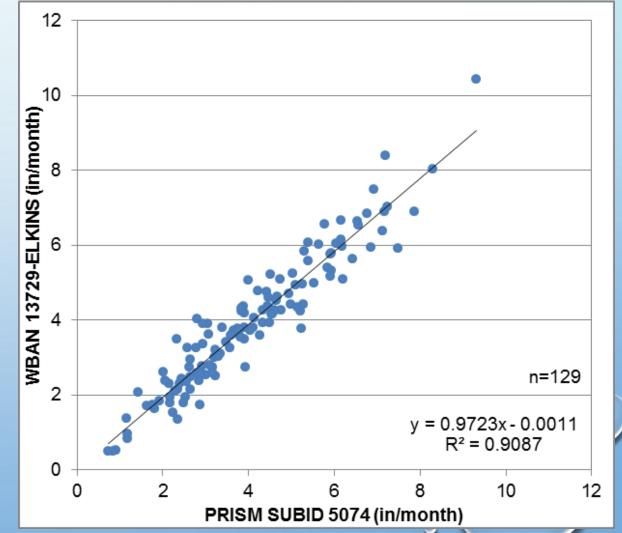

- Load Simulation Program C++ (LSPC) dynamic watershed model
 - Simulate watershed hydrology and pollutant transport
 - Flow / water budget (infiltration, runoff, evapotranspiration, snow)
 - Pervious / Impervious land uses
 - Instream water quality
 - Pollutant behavior (e.g., pH <> Metals, decay rates, build up/wash off)
 - DRIVEN BY WEATHER FILES

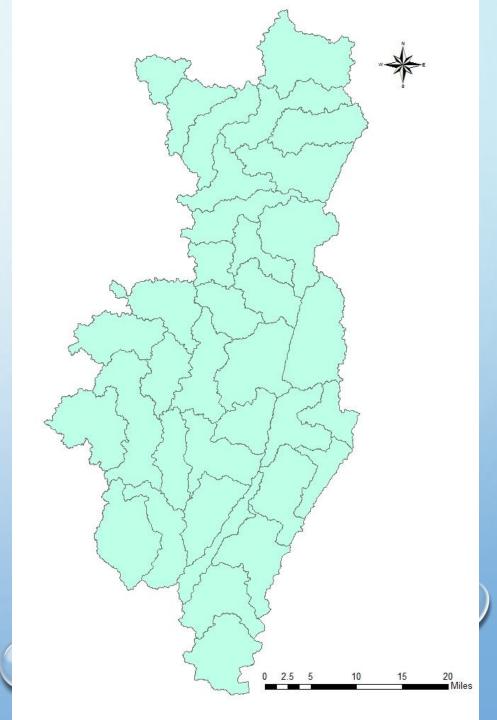
- Traditionally used NOAA National Climatic Data Center weather stations – limitations:
 - Available long term data in watershed
 - Variation in weather for large watersheds
 - Artificially loading pollutants simultaneously
- PRISM- Oregon State University's PRISM Climate Group

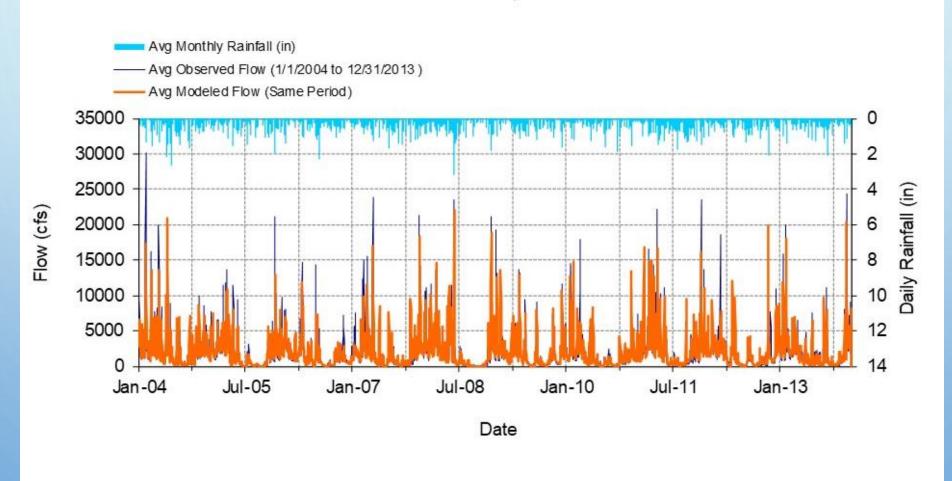



WEATHER STATIONS


NATIONAL DATA SETS


- PRISM Spatial Resolution: 4 km grid scale
- PRISM Temporal Resolution: Daily, weekly, monthly
- Data from North American Land Data Assimilation System (NLDAS-2) / NOAA
 Weather Stations
 - Rain gauge data + radar observations = precipitation, solar radiation, wind, humidity.
 - Hourly weather on a 12 km grid scale
- Disaggregate 4 km daily to hourly informed by NLDAS-2
- Area weighted 4 km hourly to create weather file for each subwatersheds


VALIDATION



- Weather file for each 520 Subwatersheds
 - Model / hardware limit around 250 weather files
- Representative weather file on 12-digit
 HUC resolution
- 36 individual weather files

HYDROLOGY CALIBRATION ACCURACY

Mean Daily Flow

Model Outlet 2085 vs. USGS 03054500 Tygart Valley River At Philippi, WV

LSPC Simulated Flow

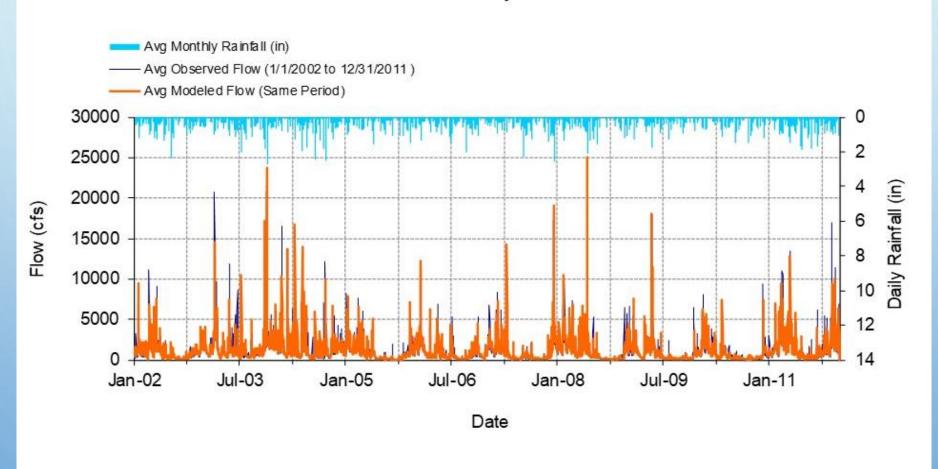
REACH OUTFLOW FROM SUBBASIN 2085

10-Y ear Analysis Period: 1/1/2004 - 12/31/2013

Flow volumes are (inches/year) for upstream drainage area

Observed Flow Gage

USG \$ 03054500 TYGART VALLEY RIVER AT PHILIPPI, WV


Hydrologic Unit Code: 5020001

Latitude: 39.15037545 Longitude: -80.038691 Drainage Area (sq-mi): 914

Total Simulated In-stream Flow:	29.42	Total Observed In-stream Flow: 29.19	
Total of simulated highest 10% flows:	11.59	Total of Observed highest 10% flows:	12.50
Total of Simulated lowest 50% flows:	3.49	Total of Observed Lowest 50% flows:	3.33
Simulated Summer Flow Volume (months 7-9):	2.42	Observed Summer Flow Volume (7-9):	2.22
Simulated Fall Flow Volume (months 10-12):	8.02	Observed Fall Flow Volume (10-12):	7.12
Simulated Winter Flow Volume (months 1-3):	11.60	Observed Winter Flow Volume (1-3):	11.60
Simulated Spring Flow Volume (months 4-6):	7.38	Observed Spring Flow Volume (4-6):	8.24
Total Simulated Storm Volume:	15.09	Total Observed Storm Volume:	14.49
Simulated Summer Storm Volume (7-9):	1.40	Observed Summer Storm Volume (7-9):	1.27
Errors (Simulated-Observed)	Error Statistics		
Error in total volume:	0.81		
Error in 50% lowest flows:	4.96	†	
Error in 10% highest flows:	-7.33		
Seasonal volume error - Summer.	8.84	†	
Seasonal volume error - Fall:	12.61		
Seasonal volume error - Winter.	-0.01		
Seasonal volume error - Spring:	-10.39		
Error in storm volumes:	4.11		
Error in summer storm volumes:	10.03		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.669	Model accuracy increases	
		as E or E' approaches 1.0	~~~~~~

CALIBRATION WITH ONE WEATHER FILE

Mean Daily Flow

Model Outlet 1117 vs. USGS 03061000 West Fork River At Enterprise, WV

LSPC Simulated Flow

REACH OUTFLOW FROM SUBBASIN 1117

10-Y ear Analysis Period: 1/1/2002 - 12/31/2011

Flow volumes are (inches/year) for upstream drainage area

Observed Flow Gage

USG \$ 03061000 WEST FORK RIVER AT ENTERPRISE, WV

Hydrologic Unit Code: 5020002

Latitude: 39.42230818 Longitude: -80.2759187 Drainage Area (sq-mi): 759

Total Simulated In-stream Flow:	21.46	Total Observed In-stream Flow:		21.25
Total of simulated highest 10% flows:	8.71	Total of Observed highest 10% flows:		8.94
Total of Simulated lowest 50% flows:	2.68	Total of Observed Lowest 50%	2.59	
Simulated Summer Flow Volume (months 7-9):	2.09	Observed Summer Flow Volum	ne (7-9):	1.91
Simulated Fall Flow Volume (months 10-12):	5.25	Observed Fall Flow Volume (10	0-12):	5.04
Simulated Winter Flow Volume (months 1-3):	8.21	Observed Winter Flow Volume (1-3):		8.00
Simulated Spring Flow Volume (months 4-6):	5.91	Observed Spring Flow Volume	6.30	
Total Simulated Storm Volume:	10.09	Total Observed Storm Volume:	-	10.07
Simulated Summer Storm Volume (7-9):	1.01	Observed Summer Storm Volu	1.00	
Errors (Simulated-Observed)	Error Statistics			
Error in total volume:	0.97			
Error in 50% lowest flows:	3.32	••		
Error in 10% highest flows:	-2.53			
Seasonal volume error - Summer.	9.14	•		
Seasonal volume error - Fall:	4.07			
Seasonal volume error - Winter.	2.70	m		
Seasonal volume error - Spring:	-6.20			
Error in storm volumes:	0.24			
Error in summer storm volumes:	1.38	(500)	DERET I	
Nash-Sutcliffe Coefficient of Efficiency, E:	0.642	Model accuracy increases	0.578	0.704
reading determine determine or Emicroney, E.				

LESSONS LEARNED

- One weather station: centralized, 2 dams w/high resolution flow data
- PRISM data preparation:
 - Process to disaggregate introduced error
 - Continual mist change calibration parameter to address
 - Missing peak run-off events
 - Increases difficulty of water quality calibration
- Possible Solutions: remove erroneous data from NLDAS-2 or rely solely on NOAA weather stations to disaggregate PRISM daily

REFERENCES

NCAR (National Center for Atmospheric Research). 2013. NCAR Research Staff. Last modified 20 Nov 2013. Electronic source, available at https://climatedataguide.ucar.edu/climatedataduide.ucar.edu/climat

PRISM Climate Group. 2014. Oregon State University. Electronic source, available at http://prism.oregonstate.edu, accessed April 15, 2014.

West Virginia Department of Environmental Protection. 2016. Total Maximum Daily Loads for the Tygart Valley River Watershed, West Virginia, Technical Report. Available at http://www.dep.wv.gov/WWE/watershed/TMDL/grpb/Pages/default.aspx, accessed May 18, 2017