Nutrient TMDLS for Algae-related Impairments to Lakes

Photo by Rhonda Cain-Carrell

TMDLs with Large Lakes or Reservoirs

1. <u>Wisconsin River Basin</u> -Castle Rock, Petenwell, and Lake Wisconsin

2. <u>Upper Fox-Wolf Basin</u>– Lake Winnebago and the pool lakes

Water Quality Standards

* Designated Uses:

- * Fish & Aquatic Life
- * Public Health (Lake Winnebago)
- * <u>Recreation</u>
- * Water Quality Criteria:
 - Numeric: dissolved oxygen, pH, bacteria, toxic substances, phosphorus, etc.

- Narrative: "no objectionable deposits," "substances in concentrations or combinations shall not be harmful to humans, fish, plants, or other aquatic life."
- * Per Wis. Stat. s. 281.15 water quality standards must be adopted by rule.

Recreational Use

Allowable phosphorus concentrations calculated to support recreational use by preventing excessive algae blooms.

(Chlorophyll *a* shall not exceed 20 µg/L more than 30% of days during July 15 – Sept 15).

Statewide Phosphorus Criteria

Rivers 100 μg/L	Streams ¹ 75 μg/L	Reservoirs • Not Stratified = 40 μg/L • Stratified = 30 μg/L	Inland Lakes ² Ranges from 15-30 µg/L	 Great Lakes Lake Michigan = 7 μg/L Lake Superior = 5 μg/L

¹All unidirectional flowing waters not in NR 102.06(3)(a). Excludes Ephemeral Streams. ²Excludes wetlands and lakes less than 5 acres

Phosphorus Criteria Justification

TMDL Development Process

Calculate baseline load contributions

Allocate loads to sources Calculate receiving water concentrations

- * For river/stream reaches:
 - * Loading capacity = Water Quality Target (criteria) * Flow
- * For lakes and reservoirs a response model is needed to simulate loads based on waterbody characteristics to determine pollutant response (algal growth vs TP)

Lake Modeling

- * Use the least complicated model that represents the answers the questions that need to be addressed
- * What's going on in the reservoir system?
- Size, shape, depth, volume
- Hydrologic budget (rain, evaporation, inflow, outflow)
- Pollutant concentration
- Chemical conditions

Castle Rock (Main Body) Jensen Model

Jensen, J. P., Pedersen, A. R., Jeppesen, E., & Søndergaard, M. 2006. An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography 51 (1) 791-800.

Site-Specific Total Phosphorus Criteria for Petenwell Flowage, Castle Rock Flowage, and Lake Wisconsin

Reservoir	Existing TP Criterion (µg/L)	Recommended Site- Specific TP Criterion (µg/L)
Petenwell Flowage	40	53
Castle Rock Flowage	40	55
Lake Wisconsin	100	47

Calculated to support recreational use by preventing excessive algae (Chlorophyll a shall not exceed 20 μ g/L more than 30% of days during July 15 – Sept 15)

Percent Reduction Maps

Current Criteria

Percent Reduct
0%
1 - 25%
25.1 - 50%
50.1 - 60%
60.1 - 70%
70.1 - 80%
80.1 - 90%
90.1 - 93%

Outfalls

•

Evaluation of Historic TP Concentrations

- Cores were collected at two sampling sites and dated with sedimentation rates determined.
- Diatoms were collected from the cores at the top and bottom of the cores to evaluate current and historic phosphorus concentrations (µg/L).

	Тор	Bottom
North Basin	108	40
South Basin	94	. 47

Schematic for the Eutrophication Model Bathtub (Simulations of Winnebago Pools)

Simulation of a 75% Reduction in all external loading to the Upper Fox/Wolf Basin

The BATHTUB model shows that a 73% reduction in external load is needed to meet 0.04mg/L.

Upper Pools need about a 70% Reduction in Loading & 40 yrs to Reach 0.04 mg/L Winnebago needs about a 75% Reduction in Loading & 75 yrs to Reach 0.04 mg/L

Historical Comparison of Butte des Morts

Estimated internal load during the growing season accounts for <u>56%</u> of the total growing season phosphorus load to Lake Winnebago (2009-2011) compared to 15% for Lake Poygan, 14% for Lake Butte des Morts, and 3% for Lake Winneconne.

Restoration of Aquatic Plants

that, HERE, Discours, Majorythela, & OpenReadMap and Bullow, and the SDE user community