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While there are many threats to biological diversity
in the United States, the loss and fragmentation
of habitats and ecosystems have become the most

significant (Wilcove et al. 1998).  The survival of plant and
animal species and whether our natural systems will contin-
ue to provide essential services—recycling of nutrients, flood
and pest control, and maintenance of clean air, water, and
soil—significantly depends upon where and how land is
used, converted, and managed.  Land use change resulting
from development and associated human activities (e.g., agri-
culture, grazing, forest harvesting,
and hunting) often alters the
abundances and varieties of
native species; introduces novel
and potentially detrimental
species to an area; and disrupts
natural water and nutrient cycles,
and natural disturbance patterns
(e.g., fire) (U.S. Geological
Survey 1998).

Everyday, land use planners are faced with decisions
regarding whether and how land is developed, parcelized,
and used, and in what pattern.  For the most part, such land
use decisionmaking occurs without taking into account indi-
vidual and cumulative impacts to biological resources.
Implementing biologically sensitive spatial planning early in
the development process will help preserve our natural her-
itage for the future, since the most crucial time for planning
is when the first 10 to 40 percent of the natural vegetation is
altered or removed from the landscape (Forman and Collinge
1997).  A growing interest exists among land use planners
and developers to use the tools at their disposal to better pro-
tect biological diversity.  However, these professionals often
lack the necessary information to incorporate ecological
principles into their decisionmaking and to transform their
traditional planning approaches into progressive, ecological-
ly-based conservation tools.  

To encourage and facilitate better integration of ecologi-
cal knowledge into land use and land management decision-
making, the scientific community needs to provide planners
with applicable ecological information and guidance.  To this
end, the Ecological Society of America (ESA) convened a

committee of leading scientists to identify principles of eco-
logical science relevant to land use and to develop guidelines
for land use decisionmaking.1 The result was the develop-
ment of eight general guidelines to assist land use planners in
evaluating the ecological consequences of their decisions (see
Box 1).

Conservation guidelines, such as those established by the
ESA Land Use Committee, are designed to be flexible and to
apply to diverse land use situations.  As a result, they tend to
be general in nature.  For ecological principles to be put into

practice, however, land use
planners will need more specif-
ic information on potential
threshold responses of species
and ecosystems to develop-
ment activities, particularly in
relation to habitat fragmenta-
tion.  To facilitate the adequate
preservation of contiguous or

connected natural areas, land use planners will need to know
what science tells them about the minimum sizes of habitat
patches species need to survive, or the amount of habitat nec-
essary for the long-term persistence of native populations and
communities in a region.  In addition, they need information
about the adequate size and placement of habitat corridors
that would facilitate species movement and colonization
among disjunct habitat patches, and about recommended
widths of riparian buffers to protect water quality and pro-
vide wildlife habitat.  Similarly, knowing the extent to which
edges influence natural habitats would help land use profes-
sionals evaluate the effective area of any given habitat patch
or corridor.  Other fragmentation thresholds—such as the
maximum distance between isolated patches tolerable in a
landscape before ecological processes and patterns become
disrupted—would arm decisionmakers with specific parame-
ters that could be incorporated into land use design and
modeling.
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INTRODUCTION

“Spatial planning is most significant in
nature conservation when 10-40% of the
natural vegetation has been removed from a
landscape.”

Forman and Collinge (1997), Landscape and
Urban Planning 37, p. 129

1 “The Ecological Society of America (ESA) is a non-partisan, nonprofit organization of scien-
tists founded in 1915 to: promote ecological science by improving communication among
ecologists; raise the public’s level of awareness of the importance of ecological science;
increase the resources available for the conduct of ecological science; and ensure the appro-
priate use of ecological science in environmental decision making by enhancing communica-
tion between the ecological community and policy-makers.”
As cited in Ecological Society of America. “About ESA.” <www.esa.org> (31 July 2002).
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In the face of rapid land use change, the Ecological Society of
America’s Land Use Committee recommends that land use plan-
ners and developers take into consideration the following eight
guidelines to evaluate the potential impact of their decisions on
our natural systems (see Dale et al. 2000 for full discussion):

1. Examine the impacts of local decisions in a regional 
context.

The persistence of species and the sustainability of ecosys-
tems are determined not only by immediate surroundings but also
by larger landscape factors, such as how habitats are inter-
spersed across the landscape. Thus, local land alterations may
have broad-scale regional impacts. Land use planners should
both identify the surrounding region that is likely to affect and be
affected by a local project and examine how adjoining jurisdic-
tions are using and managing their lands. Regional environmental
data (e.g., land cover classes, hydrologic patterns, and habitats
for species of concern) should be incorporated into the decision-
making process to facilitate a regional assessment of impacts.

2. Plan for long-term change and unexpected events.
Ecological processes, such as nutrient cycling, energy flow

patterns, and disturbance regimes, may function over lengthy and
variable time scales.  In addition, ecosystems change over time.
As a result, impacts posed by land use decisions are often long-
term and unpredictable.  Impacts may be delayed and not fully
realized until years or decades later, or they may be cumulative
such that a “unique trajectory of events” results that could not
have been predicted from any single event.  The complexity and
variability of ecosystem responses dictate that land use deci-
sions consider potential occurrences and implications of unantic-
ipated and long-term events (e.g., variations in weather and dis-
turbance patterns).  

3. Preserve rare landscape elements and associated species.
Rare landscape elements, such as wetlands, riparian and

mountain zones, and old-growth forests, often provide critical
habitats for rare and endangered species.  To protect a region’s
biological diversity, the natural diversity within a landscape must
be preserved.  Land use planners should identify the location of
rare and unique landscape elements, by methods such as inven-
tory and analysis of vegetation types, geology, hydrology, and
physical features, and by their associated species.  Once such
landscape elements are identified, development should be guid-
ed away from such areas and toward more common landscape
features.

4. Avoid land uses that deplete natural resources over a 
broad area.

Depletion of natural resources over time will lead to the irre-
versible disruption of ecosystems and associated processes.
Consequently, land use planning and development should strive

to prevent the diminishment of natural resources (e.g., soil,
water, and habitat types such as wetlands) in any given area by
identifying vital or at-risk resources and by taking the necessary
precautions to avoid actions that threaten resource sustainabili-
ty.  Certain land uses or land activities may be deemed altogeth-
er incompatible in particular settings.

5. Retain large contiguous or connected areas that contain
critical habitats.

Large habitat patches typically support a greater diversity
and abundance of plants and animals and can maintain more
ecosystem processes than small patches. Large intact habitats
provide more resources, allowing larger populations of a species
to persist, thus, increasing the chance of survival over time.
Parcelization of large habitats often decreases the connectivity of
systems, negatively affecting the movement of species neces-
sary for fulfilling nutritional or reproductive requirements. To
counter such effects, large intact areas and small areas that are
well connected to other critical habitats should be protected.

6. Minimize the introduction and spread of non-native species.
Non-native species often negatively affect the survival of

native species and disrupt the functioning of ecosystems.  The
spread of non-natives is facilitated by the development of trans-
portation infrastructure and by the creation of edge environments
and artificial landscapes.  Land use professionals should strive
to minimize the potential introduction and spread of non-native
species into natural environments.

7. Avoid or compensate for effects of development on 
ecological processes.

Development may not only cause site-specific impacts, but
may also disturb regional ecological processes.  Ecological pro-
cesses, such as fire, grazing, dispersal patterns, and hydrologic
cycles, help to sustain plant and animal populations across a
landscape.  Thus, land uses that could negatively affect other
systems or lands through the disruption of these processes
should be avoided while those that benefit or enhance ecological
attributes should be encouraged. 

8. Implement land use and land management practices that are
compatible with the natural potential of the area.

The natural potential of a site, as determined in part by local
physical and biologic conditions, should be factored into how land
is used and managed.  Land uses that do not take advantage of
a site’s natural potential or consider its limitations, will likely
result in unnecessary resource loss and high economic costs. 

For more information on ecological principles to guide land
use planning decisionmaking, see Dale et al. (2000), Duerksen et
al. (1997), and Dramstad et al. (1996).

BOX 1.  GUIDELINES FOR LAND USE PLANNING AND MANAGEMENT

Given the inherent complexity of ecological systems, sci-
entists are understandably reticent about providing exact
prescriptions for land use planning and design because
answers vary depending on the species, ecosystem, or scale in
question.  Nevertheless, by not promoting the use of even

partial knowledge about species or ecosystem responses to
human disturbance and fragmentation, the result is that land
use decisions—even the most well-intentioned—are being
made completely uninformed by science.  
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The Environmental Law Institute (ELI) surveyed exist-
ing scientific literature to determine whether a body
of knowledge has emerged within the scientific com-

munity relevant and applicable to national land use decision-
making, specifically pertaining to biological conservation
thresholds.  A literature search of the major ecological, con-
servation, and land use journals was conducted using the
Science Citation Index (ISI Web of Science) using search
terms under the following categories: habitat fragmentation,2

buffers,3 corridors,4 ecological thresholds,5 and indicator
species.6 To increase applicability to current land use deci-
sionmaking in the states, the search was confined to studies
pertaining to the continental United States, as well as articles
published between 1990-2001, and pre-1990 articles com-
monly cited within the scientific community.  Only those
articles containing quantitative information directly relevant
to determining conservation thresholds for land use planning
and land management were considered.7 In addition to the
literature search, review papers found in the gray literature
(e.g., those produced by land management and regulatory
agencies) were also included when possible and applicable.  

ELI found adequate information on potential ecological
threshold measures for the following areas: habitat patch
area, percent of suitable habitat, edge effects, and buffers.
Corridor design is reviewed in brief; however, specific guid-
ance on corridor size was not feasible given inadequate avail-
able information within the scientific literature.  This survey
reflects scientific information largely related to habitat frag-
mentation and landscape ecology issues, with a focus on the
spatial relationships (e.g., size, shape, location) and interac-
tions of land attributes over large geographic areas.8 This

review does not cover other important conservation elements
such as how to account for the biological integrity or ecolog-
ical significance of habitat patches, which land use planners
should consider when determining which parcels of land to
protect.  In addition, the thresholds presented in this review
does not adequately address the conservation of species or
habitat types that are naturally rare or localized (e.g., those
with patchy distributions or limited ranges).

This report summarizes the Institute’s findings and pro-
vides a platform for identifying gaps in existing knowledge to
help guide more in-depth ecological research directly appli-
cable to land use planning.  This report in no way attempts
to misrepresent the complexity of species and ecosystem
response to land conversion, degradation, and fragmentation
by providing simplified prescriptions. Land use planners
should cautiously interpret the presented threshold values
and ranges and tailor them to their unique circumstances and
geographic settings.  

First and foremost, land use planners need to establish
their priorities for conservation—whether they be water
quality or quantity, wildlife habitat, or biodiversity.  In addi-
tion, conservation targets need to be established—whether
they be regionally rare or endangered species or unique land-
scape elements (e.g., wetlands, old growth forests, riparian
zones), or other targets—because this will directly influence
the value and scale of any threshold.9  Thresholds should be
chosen or developed to meet the needs of the resources a
locality is most concerned with managing and conserving.
Planners should place great emphasis on evaluating site-spe-
cific and regional physical and biological conditions that
influence the resiliency of particular systems to human dis-
turbance.  

The threshold values presented in this report should not
detract from the larger goals of conserving or restoring
indigenous species, rare and representative habitats, ecosys-
tem functions, and natural connectivity.  Where possible, the
ESA land use guidelines should be followed.  Land use plan-
ners should strive to protect large, intact parcels of land, high
quality and ecologically important habitat, and where appro-
priate, should connect protected natural areas.  When devel-
opment is deemed necessary, land use planners should pro-
mote more compatible land uses and avoid or minimize frag-
menting habitat patches wherever possible.

2 To locate papers with potential habitat fragmentation threshold information, the following
search terms were used: minimum habitat size, habitat size, habitat requirement, habitat frag-
mentation, patch size, minimum fragment size, island biogeography, landscape connectivity,
habitat connectivity, and metapopulation theory.
3 To locate papers with potential threshold information on buffer width, the following search
terms were used: riparian buffer, wetland buffer, buffer zone, buffer distance, forest buffer, buffer
width, and buffer size.
4To locate papers with potential threshold information on corridor width, the following search
terms were used: fragment connectivity, boundary permeability, landbridge, highway overpass,
highway underpass, stream cross, habitat corridor, corridor, migration corridor, riparian corri-
dor, and underpass.
5 To locate papers with potential ecological threshold information, the following search terms
were used: ecological threshold, conservation threshold, environmental threshold, and land-
scape threshold.
6 To locate papers with potential threshold information relevant to indicator species, the fol-
lowing search terms were used: indicator species, indicator species and habitat fragmentation,
and indicator species and thresholds.
7 The majority of the papers encountered and selected focus on terrestrial species and to a
lesser extent freshwater aquatic communities.
8 As defined by Risser et al. (1984), “Landscape ecology considers the development and
dynamics of spatial heterogeneity, spatial and temporal interactions and exchanges across het-
erogeneous landscapes, influences of spatial heterogeneity on biotic and abiotic processes, and
management of spatial heterogeneity.”

FROM GUIDELINES TO THRESHOLDS

9 Thresholds presented in this report reflect a taxonomic bias in the scientific literature
toward birds and mammals. Thus, for many of the recommended threshold values, these two
animal groups are assumed to be the conservation targets.
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Biological diversity (or biodiversity) – the variety of life and its processes,
which includes the abundances of living organisms, their genetic diver-
sity, and the communities and ecosystems in which they occur (The 
Keystone Center 1991). Diversity at all levels from genes to ecosys-
tems need to be maintained to preserve species diversity and essen-
tial ecosystem services like climate regulation, nutrient cycling, water
production, and flood/storm protection (Dale et al. 2000). 

Biological (or ecological) integrity – refers to a system’s wholeness, 
including presence of all appropriate elements and occurrence of all 
processes at appropriate rates, that is able to maintain itself through
time (Angermeier and Karr 1994). 

Boundary – a zone comprised of the edges of adjacent ecosystems or land
types (Forman 1995).

Corridor – a linear strip of a habitat that differs from the adjacent land on
both sides, connecting otherwise isolated larger remnant habitat 
patches (Forman 1995, Fischer et al. 2000).

Buffers – linear bands of permanent vegetation, preferably consisting
of native and locally adapted species, located between 
aquatic resources and adjacent areas subject to human
alteration (Castelle et al. 1994,
Fischer and Fischenich 
2000). 

Ecosystem – a geographic area
including all the living 
organisms (e.g., people, 
plants, animals, and  
microorganisms), their 
physical surroundings (e.g.,
soil, water, and air), and 
the natural cycles (nutrient
and hydrologic cycles) that 
sustain them. Ecosystems
can be small (e.g., single 
forest stand) or large (e.g.,
an entire watershed includ-
ing hundreds of forest 
stands across many differ-
ent ownerships) (USFWS 
1994).  

Ecosystem functions – the biophysical processes that take place within an
ecosystem, apart from any human context (e.g. nutrient, energy, and
hydrologic cycling; or soil formation).

Ecosystem services – refer to the ecosystem goods (e.g., food, and 
medicine) and services (e.g., climate regulation, water purification, 
and flood control) that humans derive benefit, directly or indirectly, 
from ecosystem functions (Costanza et al. 1997).

Ecosystem sustainability – the tendency of a system to be maintained or 
preserved over time without loss of decline to elements such as its 
structure, function, diversity, and production. Sustainability is widely 
regarded as economically and ecologically desirable and the only 
viable long-term pattern of human land use (Dale et al. 2000).  

Edge – the portion of an ecosystem or habitat near its perimeter, where 
influences of the surroundings prevent development of interior/core-
area environmental conditions (Forman 1995).

Edge effects – the negative influence (e.g., such as the profound modifica-
tions of biological and physical conditions) of habitat or ecosystem 
edges on interior conditions of habitat or on associated species 
(Meffe and Carroll 1997, Lindenmayer and Franklin 2002). 

Habitat – consists of the physical features (e.g., topography, geology, 
stream flow) and biological characteristics (e.g., vegetation cover and
other species) needed to provide food, shelter, and reproductive 
needs of animal or plant species (Duerksen et al. 1997).

Habitat fragmentation – the breaking up of previously continuous habitat 
(or ecosystem) into spatially separated and smaller parcels.  Habitat 
fragmentation results from human land use associated with forestry,

agriculture, and settlement, but can also be caused by natural distur-
bances like wildfire, wind, or flooding. Suburban and rural develop-
ment commonly change patterns of habitat fragmentation of natural 
forests, grasslands, wetlands, and coastal areas as a result of adding
fences, roads, houses, landscaping, and other development activities
(Dale et al. 2000).

Landscape – a large heterogeneous land area (e.g., multiple square miles
or several thousand hectares) consisting of a cluster of interacting 
ecosystems repeated in similar form (e.g., watershed) (Forman 1995, 
Duerksen et al. 1997).

Land use – the purpose to which land is used by humans (e.g., protected 
areas, forestry for timber production, plantations, row-crop agriculture,
pastures, or human settlement) (Dale et al. 2000).

Local population – set of individuals of a species that live in the same habi-
tat patch and interact with each other; most naturally applied to “pop-
ulations” living in such small patches that all individuals practically 

share a common environment (Hanski and
Simberloff 1997).
Matrix – the background
ecosystem or land use type in a
mosaic, characterized by exten-
sive cover, high connectivity,

and/or major control over the
landscape functioning (Forman

1995). For example, in a large con-
tiguous area of mature forest embed-

ded with numerous small disturbance
patches (e.g., timber harvest patches or

clearcut areas), the mature forest consti-
tutes the matrix element type because it is

greatest in areal extent, is mostly connected,
and exerts a dominant influence on the
associated species and ecological process-
es (McGarigal 2003).
Metapopulation – a network of semi-isolat-
ed populations with some level of regular or
intermittent migration and gene flow among
them, in which individual populations may
be extinct but then be recolonized from 

other subpopulations (Meffe and Carroll 1997).
Mosaic – a pattern of patches, linear corridors, and matrix in a landscape

(Forman 1995).
Minimum viable population - The minimum viable population size is the 

smallest number of individuals required to maintain a population 
over the long-term (Forman 1995).

Non-native (or exotic) species – organisms (plants, animals, insects, and
microorganisms) that occur in locations beyond their known historical,
natural ranges or have been brought in from other continents, regions,
ecosystems, or habitats (National Invasive Species Council 2001).

Patch – a relatively homogeneous type of habitat that is spatially separat-
ed from other similar habitat and differs from its surroundings 
(Forman 1995).

Remnant patch – habitat patches that escape disturbance (e.g., develop-
ment) and are left remaining from an earlier more extensive span of 
habitat (e.g., woodlots in an agricultural area) (Dramstad et al. 1996).

Scale – the relative size or degree of spatial resolution of an area of inter-
est. Small areas of interest (e.g., area around a house of single sub-
division) are considered to be fine scale; in contrast to a larger area 
(e.g., a county or watershed), which is considered to be of coarse 
scale (Forman 1995, Duerksen et al. 1997).

Suitable habitat – habitat that meets the survival and reproductive needs
of a species, allowing for a stable or growing population over time 
(Lamberson et al. 1994).

BOX 2. DEFINITION OF TERMS

Diagram 1.
Landscape terminology.
Illustration of patch, matrix, mosaic, and
corridor relationships. Courtesy of the Federal
Interagency Stream Restoration Working Group (FISRWG), Stream Corridor
Restoration: Principles, Processes, and Practices (10/98).
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Habitat fragmentation severely
threatens biodiversity and ecosys-
tem functioning wherever humans

dominate the landscape.  Land use planners
play a significant role in determining
whether and how landscapes and ecosystems
are fragmented or maintain natural connec-
tivity.  

Habitat fragmentation is the process
whereby contiguous natural areas are
reduced in size and separated into discrete
parcels.  Fragmentation results from a reduc-
tion in the area of the original habitat due to
land conversion for other uses, such as resi-
dential and commercial development. It also
occurs when habitat is divided by roads, rail-
roads, drainage ditches, dams, power lines,
fences or other barriers that may prohibit
the free movement and migration of plant
and animal species (Primack 1993, Forman 1995).  When
habitat is destroyed, a patchwork of habitat fragments is left
behind, often resulting in patches that are isolated from one
another in a modified and inhospitable landscape matrix.10

Fragmentation causes the microclimate to be altered due to
changes in solar radiation, wind, and humidity; habitat
patches become more isolated with a growing distance
between remnant patches; and the resulting landscape is
modified by changes in size and shape of the resulting patch-
es (Saunders et al. 1991). These changes have varying
impacts on species persistence and ecosystem sustainability.

Groups of organisms respond differently to habitat frag-
mentation.  Some species, such as game species like white-
tailed deer and bobwhite quail (referred to as edge species),
may actually thrive under altered conditions (Bolger et al.
1997).  However, many other species—often rare species and
habitat specialists—are negatively affected. Species that
depend upon the interior of forests, prairies, wetlands or
other natural habitats will be absent from landscapes that
lack sufficient natural areas containing true core habitat
(Meffe and Carroll 1997).  Although a fragmented landscape
may enhance the abundance of certain generalist species,
overall, fragmentation threatens the maintenance of biodi-
versity and the functioning of natural systems (Soulé 1991,
Forman 1995).

To the detriment of many species, particularly those that
are area-sensitive, habitat patches may lack the range of
resources necessary to support permanent populations
(Primack 1993, Forman 1995).  Habitat fragmentation will
reduce the foraging and nesting ability of animals and can
lead to the rapid loss of species due to the creation of barri-
ers to dispersal and colonization.  In a fragmented landscape,
normal dispersal will be disrupted when the land surround-
ing the remaining patches is inhospitable to species formerly
thriving in the contiguous habitat (e.g., because it is degrad-
ed or is home to predators).  For example, many bird species
that dwell in the forest interior will not cross even short dis-
tances of open areas (Askins 1995).  When species migration
and dispersal is limited, new immigrants are less likely to
supplement diminishing populations, thereby, increasing
extinction vulnerability (Askins 1995).

The negative effects of habitat fragmentation are com-
pounded by an altered physical environment (see “Edge
Effects”).  Land conversion and land transformation can cause
major alterations in hydrologic regimes, mineral and nutrient
cycles, radiation balance, wind and dispersal patterns, and soil
stability (Harris 1984 as cited in Collinge 1996; Hobbs 1993
as cited in Forman 1995).  Changes in such ecosystem proper-
ties and processes in turn affect native species composition,
abundance, and long-term persistence, further degrading the
biodiversity and the integrity of the affected natural areas.

10 Matrix is the background ecosystem or land use type in a mosaic, characterized by exten-
sive cover, high connectivity, and/or major control over the landscape functioning (Forman
1995) (see Box 2).

THRESHOLDS FOR LAND USE PLANNING:
ADDRESSING HABITAT FRAGMENTATION

Varying shapes and configuation of habitat patches resulting from habitat fragmentation,
Buchanan, Alabama. Courtesy of John R. Tolliver, USDA Forest Service, www.forestryimages.org.
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Over the past 25 years, the scientific community has
devoted much energy to understanding the various
components of fragmentation—the influence of

fragment size, shape, configuration, heterogeneity, connec-
tivity, among other factors—and how they effect the sustain-
ability and persistence of species and natural processes in a
landscape.  Ideally, scientists would understand the influence
and interaction of these characteristics on the continued sur-
vival of species and the integrity of ecosystems.  Due to gaps
in scientific knowledge, available information was only
found within the literature to present potential threshold
responses related to patch area, proportion of suitable habi-
tat, edge effects, and buffers.

This paper provides land use decisionmakers with con-
crete information culled from the scientific literature in order
to translate the land use guideline #5 offered by the
Ecological Society of America (see Box 1) for on-the-ground
practice.  Recommendations on “how to retain large contigu-
ous or connected areas that contain critical habitat” are pre-
sented, with specific information on how to best protect
habitat patches and sufficient natural area, to minimize edge
effects, and to design riparian buffers and habitat corridors.

HABITAT PATCHES

A common consequence of land development is the frag-
mentation of an originally connected natural landscape into
a mosaic of disconnected habitat patches.11 The size of the
remaining habitat fragments significantly influences the type,
abundance, and diversity of species that can persist in the
affected region. In general, large patches better sustain
wildlife populations and ecosystem functions over time than
small patches. Holding other factors constant—such as patch
shape, condition, and configuration—larger areas of habitat
tend to support larger population sizes and a greater number
of interior, specialist, and native species due to increased
habitat diversity and more core area (Harris 1984, Dramstad
et al. 1996, Forman 1995).  The probability of a species pop-
ulation being extirpated generally increases with decreasing
patch size.12 This is due to the tendency of larger patches to
retain a greater array of the natural resources and ecological
functions provided by healthy ecosystems than smaller
patches with more edge, increased susceptibility to invasion
by exotics or predators, and more disturbed conditions

(Soulé 1991, Metro 2001) (see “Edge Effects”).  Area-sensi-
tive forest bird species in the mid-Atlantic United States, for
example, have been found to exhibit lower species diversity
and higher extinction and turnover rates in landscapes with
smaller mean forest patch size (Boulinier et al. 2001).

In general, to ensure the survival of individual species,
population levels must remain large enough to protect
against extinction from random natural events (e.g., floods,
fires, droughts) and to maintain sufficient genetic variation
to adapt to changing environmental conditions (e.g., changes
in rates of predation, competition, disease, and food supply)
(Gilpin and Soulé 1986, Meffe and Carroll 1997).  A com-
mon tool used to determine the size of a population(s) need-
ed to ensure long-term survival is a Population Viability
Analysis (PVA).  A PVA uses quantitative methods to predict
the likely future status of a population or set of populations
of conservation concern—often those that are at risk of
extinction (Morris et al. 2002).  This technique can take into
account the many environmental, demographic, and genetic
variables that determine extinction probabilities for individ-
ual species (Meffe and Carroll 1997).  

11 A patch is a relatively homogeneous type of habitat that is spatially separated from other
similar habitat and differs from its surroundings (Forman 1995).
12 What is being discussed in this report is to the local extinction of a species population from
a particular habitat or region (termed extirpation or population extinction), rather than the
overall elimination of the species worldwide (termed global extinction).

UNDERSTANDING THE EFFECTS OF FRAGMENTATION 

TIME

Diagram 2. Patch size and local extinction. Probability of a local
species population going extinct increases with decreasing habitat
patch size. A larger patch generally supports a larger population size
for a given species than a smaller patch, making it less likely that the
species will go locally extinct in the larger patch. Modified from
Dramsted et al (1996), Landscape Ecology Principles in Landscape
Architecture and Land-Use Planning, p. 20.
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Because plant and animal population size is the best pre-
dictor of extinction probability, habitat patches should be
large enough to maintain viable populations of important
species—including rare, endangered, and economically
important species—and to maintain the ecological processes
that support these communities.  Based on Population
Viability Analyses, general guidelines have been proposed for
minimum viable population sizes:13 1) populations less than
50 individuals being too small and vulnerable to extinction
due to their rapid loss of genetic variability and inability to
withstand natural catastrophes; and 2) populations of 1,000
to 10,000 individuals being adequate to ensure long-term
persistence (Meffe and Carroll 1997).  Such numbers, how-
ever, should be viewed with scrutiny because much debate
still exists about what size constitutes a minimum viable pop-
ulation for the many different species that make up natural
systems (Saunders et al. 1991). 

MANAGING FOR ADEQUATE HABITAT PATCH SIZE
For purposes of this review, minimum patch area is the

smallest habitat patch that should be protected in order to
sustain a species, a diversity of species or communities, or
functioning of ecosystems.  The literature suggests that,
depending on the species or habitat in question, minimum
critical patches range from as little as 0.0004 hectares (0.001
acres) (based on the needs of certain invertebrates) up to
220,000 hectares (550,000 acres) (based on the needs of cer-
tain mammals) to sustain target species or communities (see
Appendix B).  This wide range reveals that a generic “mini-
mum” critical patch size or habitat requirement does not
exist; thresholds are entirely dependent on the target species
in question.

Ultimately, the amount of habitat necessary to maintain
healthy wildlife populations varies according to many factors,
such as taxonomic group, body size, foraging and resource
requirements, and dispersal patterns of the species (Bender et
al. 1998). Taxonomic groups, such invertebrates and plants,
which have smaller dispersal ranges and tend to respond to
their environment at smaller spatial scales, are reported to
need less habitat area (e.g., less than 10 hectares or 25 acres)
(McGarigal and Cushman 2002).  

Larger patch areas are recommended to support bird,
mammal, and fish species.  Minimum habitat requirements
for birds ranged from one hectare up to 2,500 hectares
(6,250 acres), with the majority (75 percent) of the values
found within the literature to be under 50 hectares (125
acres).14 Minimum patch size required by mammals ranges
from one hectare to 10 hectares for small mammals and up
to 220,000 hectares for large-bodied or wide-ranging mam-

mals (e.g., bears, cougars).  Larger bodied vertebrates and
wide-ranging predators tend to require larger territories to
meet resource and reproductive needs (Soulé 1991).
Minimum habitat area is greater for predators, such as bears,
with recommended patch sizes greater than 900 and 2,800
hectares and cougars with 220,000 hectares (Mattson 1990,
Mace et al. 1996, Beier 1993, respectively).15 In contrast,
estimates for habitat requirements for small mammals, such
as rodents and rabbits, varied from one hectare to 10 hectares
(Soulé et al. 1992, Barbour and Litvaitis 1993, Bolger et al.
1997). Only one study was found to provide evidence on
possible watershed area needed to sustain fish species, find-
ing that suitable patch sizes larger than 2,500 hectares might
increase the chance of bull trout occurrence in Idaho
(Rieman and McIntyre 1995).

Overall, the majority of the findings in this survey per-
tain to birds and mammals (see “A Closer Look at Habitat
Patch Size” in Appendix A for specific information on num-
bers and trends).  Few studies were found to recommend
patch sizes to sustain plant, invertebrate, or fish populations.
Keeping in mind this sample represents a narrow array of
species and habitats, the protection of habitat patches of 55
hectares (137.5 acres) or more appears to capture 75 percent
of species requirements reviewed in this select survey (see
Figure 1).  Such minimum land parcels, however, are not
likely to capture particularly area-sensitive species, like wide-
ranging predators or particularly sensitive interior bird
species, found to need habitat patches greater than 2,500
hectares (or about 6,175 acres) (Trine 1998, Mattson 1990,
and Beier 1993).

Given the great scientific uncertainty and gaps in the
knowledge base on minimum habitat requirements of species
and ecosystems, land use planners should adopt a conserva-
tive approach.  The goal should be to maintain sufficiently
large intact and well-connected habitat patches that would
support the most area-sensitive species, species of greatest
environmental concern (e.g., rare, threatened, or endangered
species), or focal species, such as keystone species,16 link
species,17 or umbrella species.18 Declines in these groups of
organisms may have wide ranging implications, negatively
affecting the persistence of other associated species and
ecosystems (Dale et al. 2000).  

Land use planners should carefully consider the conser-
vation needs of species with large-area or specialized life his-
tory requirements or that depend upon a combination of dif-
ferent habitats (e.g., large-ranging predators; interior species,
or rare species); these species are likely to survive only in rel-

15 One hectare is equal to approximately 2.5 acres.
16 Keystone species are species that have greater effects on ecological processes than would
be predicted by their abundance or biomass alone (Dale et al. 2000).
17 Link species are species that exert critical roles in the transfer of matter and energy across
trophic levels of a food web or that provide critical links for energy transfer within complex
food webs (Dale et al. 2000).
18 Umbrella species are species that either have large area requirements or use multiple habi-
tats and thus overlap the habitat requirements of other species (Dale et al. 2000).

13The minimum viable population size is the smallest number of individuals required to main-
tain a population over the long-term (Forman 1995); for example, the size of a population that
would have a 95 percent probability of persisting for 100 years (Boyce 1992).
14 Recommended conservation threshold values are based on the goal of capturing 75 per-
cent of the requirements found for species, communities, and habitats surveyed in this litera-
ture review; thus, the third quartile was used by calculating the value for which 75 percent of
the threshold values lie below this value (after numerical ranking).
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atively large areas or in very specific habitat types (potential-
ly very small, localized areas), which should be actively tar-
geted for protection (Saunders et al. 1991, Ruggierro et al.
1994, Collinge 1996).  To help guide conservation planning,
umbrella species (e.g., vertebrate mammals such as cougars
and grizzly bears) have been proposed as targets for conserva-
tion, because their protec-
tion may ensure the protec-
tion of other secondary
species (Franklin 1993).  By
protecting areas large
enough to maintain viable populations of wide-ranging
species, sufficient habitat may be maintained to ensure sur-
vival of other species dependent on the same habitat.  Land
use planning that allows for the persistence of focal species—
like rare and endangered species, keystone or umbrella
species—may help direct land conservation.  Land use plan-
ners will need the help of local biologists to identify appro-
priate focal and area-sensitive species in their region to better
implement habitat conservation strategies.  

Even though protecting large expanses of connected
habitat is the ultimate goal, this may not be practicable in the
often highly developing landscapes in which land use plan-
ners often find themselves working.  In these settings, land
use professionals should try and conserve what habitat
remains and, where possible, work with land management
agencies and land trusts to identify potential areas for habitat
restoration.  Working to conserve even the smallest remain-
ing natural areas is important, particularly in human-domi-
nated landscapes.  A series of small- or medium-sized reserves
may capture a greater diversity of habitat types, environmen-
tal heterogeneity, and biological diversity than the preserva-
tion of one large fragment (Tscharntke et al. 2002) (see “Role
of small patches”).  Protecting natural habitats with the great-
est conservation significance locally and regionally—regard-
less of size—is vital to preserving biological diversity and
ecosystem services.  No matter how small habitat patches
may be, they still have ecological and/or aesthetic values,
whether providing habitat for small organisms like amphib-
ians or insects; providing green space for recreational activi-
ties; helping moderate temperature and provide shade in
urban areas; or decreasing run-off from streets, pavements,
and other impermeable surfaces.

OTHER PATCH AREA DESIGN CONSIDERATIONS
The size of any given habitat patch is only one factor

determining whether or not the patch will support species
persistence, biological diversity, and ecosystem functions.
Other factors to consider are the shape, location/configura-
tion, condition, and boundaries of patches, as well as the role
of small habitat patches.  The following is general guidance
on ways to counteract the negative impacts of habitat frag-
mentation and habitat loss at a landscape scale.

Patch shape: Patch size and shape determine the distance
of the patch’s edge to the habitat interior and the amount
of core area remaining in any remnant habitat patch (see
“Edge Effects”) (Collinge 1996).  Shape determines the
edge to interior ratio of a habitat patch, which should be
as low as possible to minimize edge effects (Wilcove et al.

1986, Saunders et al. 1991,
Collinge 1996).  Circular habitat
reserves are recommended to mini-
mize contact between the protected
core habitat and adjacent environ-

mental or human pressures (Wilcove et al. 1986).  In
contrast, long, thin remnants have proportionally more
edge, and thus, more negative edge effects (Forman and
Godron 1981, Saunders et al. 1991).

Patch location/configuration: The landscape context in
which patches reside may have an even greater effect on
the function and sustainability of a habitat fragment
than the characteristics of the patch itself (Forman
1995).  The distances between suitable habitat patches
and the nature of the matrix between these patches will
influence species survival (Ruggiero et al. 1994, Andren
1997).  In general, more connected habitats are better
than isolated habitats because patches in close proximity
are likely to enhance species dispersal, recolonization,
and persistence (Fahrig and Merriam 1994).  Even where
wildlife populations may decline or disappear in isolated
patches due to random events or patch conditions, recol-
onization may occur if species are able to successfully dis-
perse from nearby habitat (Pulliam et al. 1992).  To
maintain demographic linkages, suitable patches should
be positioned to provide stop-over points or “stepping
stones” for species dispersal (Forman and Godron 1981).
The allowable distance between patches will depend

Land use planners should strive to protec-
tion and maintain habitat patches larger
than 55 hectares (137.5 acres).

CORE

EDGE

80%

20%

60%

40%

30%

70%

Diagram 3. Patch shape and edge. The edge to interior ratio of a habi-
tat patch is affected by patch shape. A more convoluted, irregular, or
linear patch will have a higher proportion of edge, thus, increasing the
number of edge species and decreasing the number of interior species. 
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upon individual species’ dispersal capabilities, which
vary within and among species groups (Ruggiero et al.
1994, Bender et al. 1998).  When making land use plan-
ning decisions, practitioners should consider the contri-
bution of patches to the overall landscape structure and
how well the location of any given patch relates or links
to other patches (Dramstad et al. 1996).

Boundary zone: The contrast between a patch edge and
the surrounding landscape matrix (also referred to as the
boundary zone) affects the severity of edge effects and
the dispersal abilities of wildlife populations.  The high-
er the contrast between patch types or patches and their
surrounding matrix, the greater the edge effects
(Franklin 1993).  Boundaries in a landscape could be
either “hard” or “soft.”  Hard boundaries usually result
from human activities, such as clearcutting and develop-
ment, and have linear borders with high vegetation con-
trast, such as between a forest and cultivated field.  Soft
edges, which dominate natural landscapes, tend to have
varying degrees of structural contrast with curved habi-
tat boundaries (Forman 1995).  To minimize edge effects
at the local scale and facilitate the movement of species
between a patch and the surrounding matrix, land use
planners should mimic naturally occurring edges and
provide gradual thinning of vegetation (e.g., smaller
shrubs grading into larger shrubs and taller trees at the
edge of a wooded patch) rather than an abrupt transition
from vegetated to denuded areas (Forman and Godron
1981, Forman 1995, Duerksen et al. 1997).

Patch condition: The quality of the habitat patch itself
will also influence the ability of remnant species and sys-
tems to persist or function over the long-term (Fahrig
and Merriam 1994, Forman 1995).  Large patches with
degraded habitat—such as those dominated by non-
native species, or with diminished biological diversity,
severe erosion, or modified hydrologic patterns—may
have less conservation value than small patches of high
biological integrity.19 The biological integrity of land
parcels and whether or not they contain unusual or dis-
tinctive landscape features (e.g., cliffs, caves, meadows,
thermal features, and vernal pools), old-growth forests or
mature habitats, or rare, threatened, or endemic species,
are also factors that land use planners should consider
when selecting which lands to conserve (Dramstad et al.
1996, Duerksen 1997, Lindenmayer and Franklin
2002).

Role of small patches: While large patches generally are
recommended to provide sufficient habitat to sustain
populations of species—particularly area-sensitive

species—small patches also play a vital role in regional
conservation.  Although larger patches may contain
greater habitat diversity than smaller ones, a collection of
multiple small patches may capture a greater array of
habitats, and perhaps more rare species, than a single
large habitat patch (Forman and Godron 1981,
Saunders et al. 1991, Forman 1995, Tschartnke et. al.
2002).  Small wetlands of less than two hectares, for
example, can support surprisingly high species richness
of amphibians (Richter and Azous 1995 as cited in
Metro 2001).  Proximity to core habitat and local habi-
tat heterogeneity, rather than riparian habitat area, may
better predict reptile and amphibian richness (Burbink
et. al. 1998).  In addition, small isolated riparian habitat
patches have been found to be vital stop-over sites for en-
route migratory birds in the southeastern United States
(Skagen et al. 1998).  If strategically positioned between
larger habitat patches, smaller patches can serve as “step-
ping stones” to allow for greater species dispersal and
recolonization (Murphy and Weiss 1988; Burel 1989
and Potter 1990 as cited in Fahrig and Merriam 1994;
Forman 1995).  

Many of the above described factors influence not only
the effective habitat patch size, but also other fragmentation
thresholds, such as the proportion of suitable habitat or the
amount of edge in a landscape.  Thus, land use planners
should keep these design considerations in mind when inter-
preting the thresholds presented below. 

19 Biological integrity refers to “a system’s wholeness, including presence of all appropriate ele-
ments and occurrence of all processes at appropriate rates” (as cited in Angermeier and Karr
1994).

Stepping Stones

Diagram 4. Stepping stone patches. Protecting habitat patches strategi-
cally positioned between larger habitat patches can be a way to enhance
species dispersal and colonization in a landscape, and to increase local
species population persistence. Modified from Duerksen et al. (1997),
Habitat Protection Planning: Where the Wild Things Are, p 14.
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SUITABLE HABITAT IN LANDSCAPE

Landscapes are complex assemblages of many habitat
fragments that together help sustain large-scale biological
systems.  As a result, meeting minimum patch sizes for
species in a given landscape may be inadequate to ensure
their persistence (Fahrig 2001).  The configuration and
nature of the landscape surrounding a patch also greatly
determine whether a region will support species persistence
and diversity (Lindenmayer and Franklin 2002).

In addition to considering the size of patches, land use
planners must consider the total amount of suitable habitat
in a given landscape.  Local populations of plants and ani-
mals are often linked together by dispersal, essentially form-
ing a larger “metapopulation” (Hanski and Simberloff
1997).20 Individual species from such subpopulations
migrate between habitat patches, interacting and breeding
with other individuals, which influences the overall survivor-
ship of the species in a region.  In addition, the quality and
availability of habitat patches can greatly determine the via-
bility of a metapopulation.  Some habitat patches may be of
higher quality allowing for the local species population to
benefit from higher reproductive rates than death rates.
These “source” populations produce excess individuals that
could emigrate into neighboring patches to settle and breed,
thus, expanding the overall population and helping to buffer
it from local extirpation.  On the other hand, some habitat
patches may be of poor quality, where local productivity is
less than mortality.  Referred to as “sink” populations, these
areas lack immigration of individuals from source popula-
tions, leading to the extirpation of the local population
(Pulliam 1988). For species populations that exhibit a
metapopulation structure, land use planners should strive to
protect existing source habitat patches, as well as restore
habitat that may serve to support future source populations.
However, land use planners should be cautious not to desig-
nate critical habitat solely by the proportion of the local pop-
ulation present; a source habitat could support as little as 10
percent of the metapopulation, which is responsible for
maintaining the other 90 percent of the total population
(Pulliam 1988).  Rather, land use planners should work with
ecologists to identify source habitat by demographic charac-
teristics (e.g., death and birth rates of species).

Metapopulation theory reveals that the local extinction
of a subpopulation can be prevented by occasional immigra-
tion from neighboring patches, termed the “rescue effect,”
which is considered important in maintaining small popula-
tions and high levels of species diversity (Brown and Kodric-
Brown 1977, Stevens 1989).  Local extinctions may com-
monly occur within small habitat patches; about 10-20 per-
cent of certain local populations of plants, arthropods,
amphibians, birds, and small mammals within various habi-

tat types have been found to go extinct per year (Fahrig and
Merriam 1994).  Thus, a set of interconnected habitat patch-
es should be conserved to sustain sufficiently large metapop-
ulations that would allow for regional species persistence.21

Habitat patches must also be configured to facilitate disper-
sal and recolonization between patches, particularly those
used for breeding and foraging (Saunders et al. 1991, Fahrig
and Merriam 1994, Boulinier et al. 2001, Fahrig 2001).
Land use planners should strive to identify particular sub-
populations, habitat patches, or links between isolated patch-
es that are critical for the maintenance of the overall
metapopulation of priority species (Meffe and Carroll 1997).

Not only is the quality of the habitat patches themselves
important, but also the condition of the matrix between iso-
lated habitat patches.  If the matrix is able to support popu-
lations of species present in the original contiguous habitat or
allows for adequate species dispersal or migration between
fragments, then communities in remnant patches may retain
diverse and viable populations of native plants and animals
(Askins 1995).  Estimating the proportion of suitable habitat
in a landscape is a larger scale method of determining how
much suitable habitat should be conserved to ensure the per-
sistence of species in a region.   

MANAGING FOR THE AMOUNT OF NECESSARY HABITAT IN A
LANDSCAPE

Scientists generally offer recommendations on the pro-
portion of suitable habitat that should be conserved in a

SINK

SOURCE

Diagram 5. Metapopulation and Source/Sink Dynamics. Local popula-
tions of organisms in different habitat patches may be linked demo-
graphically, forming an interdependent metapopulation. “Source” habi-
tat patches, which supplement local populations in “sink” habitat patch-
es, should be targeted for protection. Ideally, land use planners should
protect entire metapopulations. Modified from Mette and Carroll
(1994), Principles of Conservation Biology, p 188.

20 A metapopulation is a set of local populations that interact by individuals moving between
the local populations (or subpopulations) (Hanski and Gilpin 1991).

21 A local extinction refers to the extinction of a single, local population in a given geograph-
ic area; a local extinction does not entail that the entire species has gone extinct within its
known range.
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landscape based on two scientific trends.  First, species disap-
pear in a landscape with the loss of a certain amount of habi-
tat, and different species go extinct at different thresholds of
habitat loss (Fahrig 2002).  Thus, scientists have estimated
extinction thresholds to determine the proportion of suitable
habitat needed to sustain specific species.22 The “extinction
threshold” is the minimum amount of habitat required for a
population to persist in a region below which the population
will go extinct (Fahrig 2001, Fahrig 2002).23 Extinction
thresholds are essentially the converse of population viability
estimates derived from PVAs (described above).   

Second, threshold values may be based on the amount of
habitat below, which the negative effects of habitat fragmen-
tation may compromise species persistence. This is termed
“habitat fragmentation thresholds” (Andrén 1994, Fahrig
1998).  As the proportion of suitable habitat decreases in a

landscape, the reduction in patch sizes and the increasing iso-
lation of these fragments begins to significantly affect the
abundance, distribution, or diversity of species in the land-
scape due to alterations in species movement or the spread of
disturbance (e.g., wildfire, flooding, invasion by exotic
species), among other factors (Gustafson and Parker 1992,
Andrén 1994).  The recommendations presented in this
review are largely based on existing literature reviews of both
extinction thresholds and habitat fragmentation thresholds
(see Andrén 1994, Fahrig 2001).

Studies of suitable habitat range between 5 percent to 80
percent of the landscape depending on the species, geograph-
ic region, and parameters in question (see Appendix C).
Seventy-five percent of the surveyed studies reported that
suitable habitat should be up to 50 percent of the total land-
scape, whereas 50 percent of the studies reported at least 20
percent of habitat (see Figure 2).  Given the constraints pre-
sented by the available literature (see “A Closer Look at
Proportion of Suitable Habitat” in Appendix A for explana-
tion on limitations), the conservation of greater proportions
of habitat—such as a minimum of 60 percent—is recom-

Natural communities vary greatly in the area in which they
occur.  In order to determine which land parcels and how much
habitat to protect, land use planners should plan at the appropri-
ate scale for the target system or species.  Ideally, planning would
occur across multiple scales to capture the greatest habitat and
species diversity (see Box 2 for a definition of scale).   
1. Coarse scale

Certain habitats and species, termed “matrix” habitats and
“coarse-scale” species, will require planning to occur at a very
large scale to capture their wide-ranging needs.  Natural communi-
ties—such as spruce-fir forests (Northeast), longleaf pine forests
(Southeast), tallgrass prairie (Midwest), and sagebrush (West)—
can span as much as one million contiguous acres.  Matrix commu-
nities are historically dominant habitat and exist across widespread
physical gradients, such as broad ranges of elevation, precipita-
tion, and temperature. Coarse-scale species (also termed wide-
ranging species) require large areas to access the quantity of habi-
tat or the different habitat types needed for survival (e.g., prairie
chicken, fox, badger, marten, and pike minnow).  Migratory species
(e.g., migratory birds or salmon) and top-level predators (e.g., cari-
bou, wolves, and bears) may depend upon not only matrix commu-
nities, but also associated habitat patches (described below), con-
necting corridors, and aquatic systems.  To address the needs of
such expansive communities and wide-ranging species, land use
planners will need to take a landscape scale and regional
approach; an area of several thousand acres up to one million
acres may need to be conserved.  This scale of planning will likely
demand an inter-jurisdictional perspective and inter-municipal coop-
eration.  
2. Intermediate scale

Planning may need to occur at a smaller scale—on the order
of several hundred to a thousand acres—to conserve “large patch”
community types and “intermediate-scale” species.  Occurring in
large patches, but not as vast an area as matrix types, are commu-
nities like red maple-black ash swamps or northern hardwood
forests.  Large patch communities may span a thousand acres but

are bound by certain physical factors (e.g., coastal salt marshes
being defined by low topographic position and predictable tides) or
by a single dominant ecological process (e.g., fire, flooding, or
drainage). Intermediate-scale species are those that depend on a
single large patch or several different kinds of habitats (e.g.,
amphibians that depend on both wetland and upland complexes).   
3. Fine scale 

Land use planners will need to plan at a more “fine” or site-
specific scale to ensure that “small patch” communities and local-
scale species are protected.  Small patch communities are commu-
nities that naturally occur in narrow, localized, or discrete areas
(e.g., fens, bogs, glades, caves, or cliffs) or occur only where spe-
cific or narrow physical factors and local environmental conditions
are present (e.g., seepages, outcrops, certain types of soil).  Local-
scale species are species with limited movement and dispersal
abilities or specific habitat needs that restrict their populations to
a single community or habitat type.  Belonging to this category are
many rare and threatened species, insects, and plants.
Occurrences of small patch communities and local-scale species
may be found in only a couple of acres up to several hundred acres.

Given the natural variability in occurrence of communities and
species and their wide-ranging geographic needs land use planners
will need to plan at multiple scales to capture the biological diver-
sity of a region, as well as to plan at the right scale for designated
conservation targets.  

The conservation thresholds found within this literature survey
are predominately based on matrix and large patch communities,
as well as coarse- and intermediate-scale terrestrial species.
Thus, the findings and recommendations in this report do not fully
address the conservation needs for small patch communities,
local-scale species, and aquatic environments.  To ensure the pro-
tection of restricted communities and rare species, land use plan-
ners will need to collaborate with local ecologists to identify priori-
ty conservation areas for their region.

The above information is based on research by The Nature Conservancy
(TNC) (see Poiani and Richter 2000, and TNC 1998). 

BOX 3. PLANNING AT THE RIGHT SCALE

22 From a species perspective, suitable habitat has been interpreted as habitat utilized for
nesting, with associated expected birth and death rates that allow for a stable or growing pop-
ulation (Lamberson et al. 1994).
23 The extinction threshold may be estimated by: 1) the minimum amount of habitat below
which the equilibrium population is zero; or 2) the minimum amount of habitat below which
the probability of longterm population survival is less than one (Fahrig 2002).
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mended to sustain long-term populations of area-sensitive
species and rare species.

Scientists have proposed that more robust species (e.g.,
large dispersal range, high fecundity, high survivorship)—
usually the more common
widespread species—may
persist in even the most
extensively fragmented
systems with only 25 to
50 percent of suitable habitat.  In contrast, rare species and
habitat specialists like the Northern spotted owl may require
up to 80 percent of suitable habitat to persist in a region
(Lande 1987, Lande 1988, Lamberson et al. 1992).  Land use
planners should take into account the more sensitive and rare
species within their region to develop critical thresholds for
proportions of suitable habitat relevant to their geographic
setting (Mönkkönen and Reunanen 1999).  Such an
approach may also provide for the protection of more com-
mon and robust species that depend on similar habitat types.

In addition to the proportion of suitable habitat, other
considerations should be factored into land use decisionmak-

ing, such as the spatial arrangements of remaining habitat
patches and the matrix between patches.  In landscapes that
are highly fragmented—including most urban, suburban,
and even rural areas with less than 30 percent of remaining

suitable habitat—the spatial arrange-
ment of habitat patches greatly affects
species survival (Andrén 1994).  For
example, wetland bird communities
are found to depend not only on

their local habitat, but also on the amount of wetlands with-
in a surrounding three kilometer buffer (Fairbairn and
Dinsmore 2001).  

The condition of the surrounding matrix in which habi-
tat patches are embedded also influences the effective size of
the remaining fragments and the degree to which the patch-
es are isolated (Andrén 1994, Lindenmayer and Franklin
2002).  In turn, these factors affect whether or not species
will be able to successfully disperse among habitat patches
and whether important ecosystem processes, such as fire and
hydrologic cycling, will occur on the landscape (Fahrig and
Merriam 1994) (see “Patch location/configuration”).

Land use planners should strive to 
conserve at least 20% to 60% of natural 
habitat in a landscape.
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EDGE EFFECTS

Habitat fragmentation inevitably results in the creation
of edge environments.  Edges occur where a habitat—such as
a forest, prairie, or wetland—meets a road, clearcut, housing
development, or some other natural or artificial transition or
boundary (Soulé 1991).  Habitat fragments differ from the
original contiguous natural habitat in that they have a greater
amount of edge per area and the habitat core is closer to an
edge environment.  Patch edges may have significantly differ-
ent conditions than the contiguous system or habitat interi-
or, with altered fluxes of wind, sun exposure, water, and
nutrients that greatly affect animal and plant communities
(Saunders et al. 1991, Murcia 1995).  This change in energy,
nutrient, or species flow results from increased amounts of
edge and reduced interior habitat, and has been termed the
“edge effect.”   

Increased amounts of edge along habitats create a dis-
turbed environment that allows for the establishment of pest
and predator species, which penetrate the fragment interior
and adversely affect the diversity and abundance of interior
species (Primack 1993).  Mammalian predators (e.g., rac-
coons, foxes, coyotes, feral cats), egg-eating birds (e.g., crows
and blue jays), and brood parasitizers (e.g., brown-headed
cowbirds) concentrate their hunting along forest edges, thus,
increasing the intensities of predation on native species
(Soulé 1991).24 Habitat fragmentation also increases the vul-
nerability of remnant patches to invasion by exotic and pest
species (Soulé 1991, Askins 1995).  Higher frequency and
intensity of disturbances, like fire and wind damage, may
also result due to increased edge (Soulé 1991).  Edges like
roads and trails introduce such disturbances as pedestrian,
pet, and vehicular traffic, causing animals to avoid such areas
(Duerksen et al. 1997).  Each of these edge effects has signif-
icant impact on the vitality and composition of the species in
the remaining habitat patch.  

Information on environmental and species response to
edges helps determine how large patch sizes should be
designed to provide sufficient interior habitat, as well as how
far development, such as roads, trails, and housing, should be
from remnant core areas.

MANAGING FOR EDGE INFLUENCE
The intensity of edge effects has been measured by a

number of different methods.  The influence of an edge
(termed “edge influence”) may be defined as the distance
between the border to the point where microclimate and veg-
etation do not significantly differ from the interior condi-
tions of the habitat.  From a species perspective, edge influ-
ence may be defined as the distance from an edge to the area
where species densities, survival rates, or reproductive rates

do not differ from those
in the interior habitat
(Forman 1995, Murcia
1995).  Edge influence
has also been measured
by the behavioral
response of animal move-
ment, such as flushing
distance, from a distur-
bance associated with
edge environments.25

The intensity of edge
effects is influenced by
many physical factors,
such as the shape and size
of the patch, the direc-
tion the edge faces (i.e.,
aspect), and the struc-
tural contrast of its
boundaries (Soulé 1991).

As discussed earlier, larger, circular patches will have more
interior habitat and less edge than a rectangular or oblong
patch of the same size (Forman and Godron 1981) (see
“Patch shape”).  The orientation of edges affect the amount
of exposure to solar radiation, with edges facing the equator
tending to have wider edge influence (Forman and Godron
1981, Murcia 1995).  The more structurally different the
boundaries between different habitat types, the greater the
edge effects.  

To decrease the influence of edge, buffers are recom-
mended to “soften” the transition between natural and artifi-
cial environments (see “Boundary zone”).  A remnant forest
patch directly abutting cropland or urban development will
have significant edge effects in contrast to a forest adjacent to
a buffer of small shrubs or secondary vegetation.  In addition,
some habitat types may be more susceptible to negative edge
effects; for example, grasslands have been found to exhibit
wider edges than forest edges (Forman 1995).  

Scientists offer a wide range of findings on the distance
edge effects penetrate into ecosystems in the United States,
with results ranging from only eight meters up to five kilo-
meters.  Based on the response of birds to edge environ-
ments, edge effects may penetrate into a habitat patch from
about 16 meters up to almost 700 meters; mammals may
avoid edge environments from 45 meters up to 900 meters;
and microclimate changes may extend from eight meters up
to 240 meters into habitat (see Appendix E).  The majority of
the surveyed studies (75 percent) estimates edge influence to
be approximately 230 meters or less (see Figure 3).

Based on this select review, land use planners should take
a conservative approach to mitigating edge effects.  To pro-

Creation of edge by deforestation,
Willamette National Forest, Oregon.
Photo courtesy of Steve Holmer,
American Lands Alliance.

24 Cowbird females lay their eggs in the nests of other bird species, relying on these hosts to
incubate and raise their chicks. Brown-headed cowbirds have been found to parasitize over
220 host species. (see http://www.audubon.org/bird/research/cowbird-info.html).

25 Flushing distance is the distance that an animal may flee in response to a disturbance, such
as in response to pedestrian or pets on a trail or vehicular traffic on roads (Duerksen et al.
1997)
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vide for sufficient suitable habitat, land use planners should
buffer remnant patches by at least 300 meters from all edge
peripheries, particularly for
matrix and large patch com-
munity remnants; naturally
small patch communities
may not require such a wide
buffer (see Box 3).  The area within the buffer should not be
counted as suitable habitat provided for species conservation.
In addition, roads, trails, and other development should be
placed at least 300 meters away from interior habitat to min-
imize impact. Ideally, land use planners and ecologists should

work collaboratively to determine the intensity of edge
effects by the response of species or groups of species that are

most sensitive to patch size in the
ecosystems or regions of concern
(Forman 1995).  Measuring edge
distance by the most sensitive
species—often vertebrates of

conservation concern—would mean that the influence of
edges may actually be hundreds or thousands of meters, thus,
requiring much larger patch sizes to meet habitat require-
ments. 

To avoid the negative effects of edges, land
use planners should consider buffering up to
230 to 300 meters around edge peripheries.
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RIPARIAN BUFFERS

Although generally comprising a small proportion of the
landscape—often less than 1 percent—riparian areas are
regional hot spots that support a disproportionately high
number of wildlife species and provide a wide array of eco-
logical functions and values (Naiman et al. 1993, Fischer and
Fischenich 2000, National Research Council 2002).  The
support of high levels of species diversity and ecological pro-
cesses in these areas is due in part to regular disturbance
events, like floods, as well as to climatic and topographic
variation and the availability of water and nutrients (Naiman
et al. 1993).  

Riparian areas are ecosystems adjacent to or near flowing
water, such as rivers, lakes, shorelines, and some wetlands.
They are transitional areas between aquatic and upland ter-
restrial systems and exhibit gradients in environmental con-
ditions, ecological processes, and living organisms (National
Research Council 2002).  Unfortunately, riparian systems are
continuously threatened by adjacent or upstream human
activities.  For example, agricultural, industrial, or urban
development can increase levels of light, temperature,
stormwater runoff, sedimentation, pollutant loading, and
erosion, which degrade water quality and diminish suitable
aquatic habitat (Castelle et al. 1994).  In the last 200 years,

over 80 percent of riparian land in North America and
Europe has disappeared (Naiman et al. 1993).    

To ameliorate the negative impacts of adjacent land uses,
a common regulatory and management practice is to estab-
lish protected areas, or buffers, around aquatic resources like
rivers, streams, lakes, and wetlands.  At least 15 states and
seven local jurisdictions in the United States have adopted
riparian buffer regulations, protecting widths ranging from
six meters to over 300 meters in size (Johnson and Ryba
1992). 

Buffers are vegetated zones, usually linear bands of per-
manent vegetation, preferably native species, located
between aquatic resources and adjacent areas subject to
human alteration (Castelle et al. 1994, Fischer and
Fischenich 2000).  Buffers can help regulate riparian micro-
climate and provide necessary shading for the in-stream
growth and reproduction of aquatic life; stabilize stream
banks and prevent channel erosion; provide organic litter
(e.g., leaf litter) and woody debris, which are important
sources of food and energy for fish and aquatic invertebrate
communities; remove or regulate sediment, nutrients, or
other contaminants (e.g., pesticides, herbicides) from runoff;
provide flood attenuation and storage to decrease damage to
property; and provide wildlife habitat (Castelle et al. 1994,
O’Laughlin and Belt 1995, Wenger 1999, Fischer and
Fischenich 2000, National Research Council 2002).

Riparian buffer establishment, North Hather Creek, Innoko, Alaska. Courtesy of U.S. Fish and Wildlife Service.
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MANAGING FOR ADEQUATE BUFFER WIDTH
Recommended buffer widths are commonly determined

by one of two methods: uniform versus variable widths.
Uniform-width buffers are commonly adopted because they
are easier to enforce, require less specialized knowledge, time,
and resources to administer, and allow for greater regulatory
predictability (Castelle et al. 1994).  Uniform widths are
often based on a single resource protection goal, usually relat-
ed to water quality.  In contrast, with variable-width buffers,
the size or width of the strip is adjusted along its length to
account for multiple functions, adjacent land use, and site
and stream conditions.  The width of the strip may be adjust-
ed depending on the value of
the aquatic resources, the
intensity of surrounding land
use, and the type and condi-
tion of vegetation, topogra-
phy, soils, or hydrology,
among other variables.  For example, a larger width may be
required for buffers surrounding more pristine or highly val-
ued wetlands or streams; in close proximity to high impact
land use activities; or with steep bank slopes, highly erodible
soils, or sparse vegetation (Castelle et al. 1994, Fischer and
Fischenich 2000).  

Although the method of varying buffer width is general-
ly believed to provide more adequate protection for aquatic
resources, it may be less efficient because variable strips can
retain less material than a uniform-width buffer of equivalent
average width (Weller et al. 1998).  Thus, providing policy-
makers with scientific guidance on uniform buffer widths
allows for the implementation of practicable land manage-
ment practices that protect aquatic resources.

For this report, riparian buffer widths are measured from
the top of the bank or level of bankfull discharge of one side
of a water body;26 therefore, a 50 meter buffer on a 10 meter
stream would create a zone at least 110 meters wide (Wenger
1999, Fischer and Fischenich 2000).

As with other conservation thresholds, the scientific lit-
erature does not support an ideal buffer width applicable in
all circumstances.  This survey found recommended buffer
widths ranging from one meter up to 1600 meters, with 75
percent of the values extending up to 100 meters (see “A
Closer Look at Buffer Width” in Appendix E for further dis-
cussion).  At minimum, a riparian buffer should encompass
“the stream channel and the portion of the terrestrial land-
scape from the high water mark towards the uplands where
vegetation may be influenced by elevated water tables or
flooding, and by the ability of soils to hold water” (Naiman
et al. 1993). 

The necessary buffer size varies considerably based on
the specific management goal.  In general, recommended
buffer sizes are significantly greater if the intent is to protect
ecological functions, such as providing wildlife habitat and
supporting species diversity, as opposed to water quality
functions.  

Based on the majority of scientific findings, land use
practitioners should plan for buffer strips that are a mini-
mum of 25 meters in width to provide nutrient and pollu-
tant removal; a minimum of 30 meters to provide tempera-
ture and microclimate regulation and sediment removal; a
minimum of 50 meters to provide detrital input and bank

stabilization; and over 100 meters
to provide for wildlife habitat
functions.27 To provide water
quality and wildlife protection,
buffers of at least 100 meters are
recommended (see Figure 4). 

OTHER BUFFER DESIGN CONSIDERATIONS
The width of any given buffer is just one aspect, albeit

important, which determines its ability to provide a variety
of functions.  Other factors to consider are the linear extent,
vegetation composition, and level of protection of buffers.
The following is general guidance on the design and develop-
ment of buffers.

Vegetation: Buffers should have diverse vegetation that
is both native and well-adapted to the region.
Maintaining a diverse array of species and vegetation
structure (e.g., herbaceous ground cover, understory
saplings, shrubs, and overstory trees) is recommended to
allow for greater tolerance to possible fluctuations in
environmental conditions (e.g., water levels, tempera-
ture, herbivory), and to provide for greater ecological
functions (e.g., wildlife habitat) (see Fischer and
Fischenich 2000 for further guidance on vegetation type,
diversity, and propagation techniques).
Extent: In part, the effectiveness of a buffer in meeting
management objectives is a function of the linear extent
of the aquatic system that is protected (Wenger 1999).
Protection efforts should prioritize the establishment of
continuous buffer strips along the maximum reach of
stream, rather than focusing on widening existing buffer
fragments (Weller et al. 1998).  Protection of the head-
water streams as well as the broad floodplains down-
stream is also recommended.  Headwater streams and
downstream floodplains generally encompass less than
10 percent of total landmass; thus, this level of protec-
tion is practicable (Naiman et al. 1993).  Ideally, buffers

26 The bankfull discharge is the maximum level of discharge that a stream channel can con-
vey without flowing onto its floodplain. This stage plays a vital role in forming the physical
dimensions of the channel because the flows near the bankfull stage move the most sediment
over the long-term and the processes of sediment transport and deposition are the most
active in forming the channel (Dunne and Leopold 1978).

Land use planners should strive to establish
100-meter wide riparian buffers to enhance
water quality and wildlife protection.

27 While a 100-meter buffer is recommended to provide for adequate wildlife values, some
natural riparian habitat is too narrow to support such an area. In these cases, land use plan-
ners should consider the utility of narrower buffers, especially where they might function as
wildlife corridors (see “Habitat Connectivity”).
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should extend along all perennial, intermittent, and
ephemeral streams, lakes, shorelines, and adjacent wet-
lands (Weller et al. 1998, Wenger 1999), so long as such
buffering would not create detrimental upland habitat
fragmentation as might be the case in areas of high
stream densities (Lindenmayer and Franklin 2002).
Buffer protection: To ensure that buffers function ade-
quately, all major sources of disturbance and contamina-
tion should be excluded from the buffer zone, including
dams, stream channelization, water diversions and

extraction, heavy construction, impervious surfaces, log-
ging roads, forest clear cutting, mining, septic tank drain
fields, agriculture and livestock, waste disposal sites, and
application of pesticides and fertilizers (Wenger 1999,
Pringle 2001).  Another consideration is the level of legal
protection afforded to the area.  Whether the buffer is in
preservation status or protected under a conservation
easement that allows for some level of activity, for exam-
ple, will also determine its ability to provide desired
functions. 

BOX 4. UNDERSTANDING THE EFFECTS OF LAND USE 

The many different uses of land—whether for agriculture, silviculture, recreation/open space, or commercial or residential devel-
opment—will have varying impacts on the ecosystems, habitats, and species in a region.  The types, extent, and combinations of land
uses within a matrix will affect the viability of habitat patch sizes, the amount of suitable habitat, the severity of edge effects, and the
utility of buffers and corridors in a given landscape.   

Certain land use types are likely to be more compatible with biodiversity conservation in certain landscapes, depending on the
natural arrangement of physical features, habitats, and species, and the effect of previous land uses (Forman 1995).  A study on breed-
ing bird communities in central Pennsylvania, for example, found that forests within agricultural landscapes had fewer forest-associat-
ed species, long-distance migrants, forest-canopy and forest-understory nesting species, and a greater number of edge species than
forest landscapes primarily disturbed by silviculture, irrespective of the effect of disturbance (Rodewald and Yahner 2001).  In Colorado,
ranchlands and protected reserves were found to be more compatible with species of conservation concern (including songbirds, car-
nivores, and plant communities) than exurban developments, which tended to support only human-adapted species (Maestas et al. in
press).  

To plan for long-term sustainability, land use planners will need more guidance on the level of compatibility of different land uses
in various regions and ecosystems.  As a general rule, a landscape mosaic should be planned first according to its ecological con-
straints (e.g., water availability, forest and soil productivity, natural flooding/fire cycles) and natural site potential (e.g., natural poten-
tial for productivity and for nutrient and water cycling) (Dale et. al. 2000).  In terms of hierarchical planning, a general recommenda-
tion is for land use planners to first plan “for water and biodiversity; then for cultivation, grazing, and wood products; then for sewage
and other wastes; and finally for homes and industry” (Forman 1995 as cited in Dale et al. 2000, p.658).
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HABITAT CONNECTIVITY

Conservation biologists generally agree that species via-
bility and diversity are enhanced by well-connected habitats
(Fahrig and Merriam 1985, Gilpin and Soulé 1986, Primack
1993, Noss and Cooperrider 1994, Meffe and Carroll 1997,
Beier and Noss 1998, Lehtinen et al. 1999).  Because small,
isolated reserves are unlikely to maintain viable populations
over the long-term, and because climate change and distur-
bances require that organisms be able to move over large dis-
tances, corridors are recommended as one conservation mea-
sure to counter the negative effects of habitat fragmentation
and patch isolation (Noss 1991).  

Not only can riparian buffers help ensure water quality
protection and habitat for plants and animals adjacent to
waterbodies, but they can also act as dispersal routes for
species and connect remnant patches.28 Although riparian
corridors are useful for some terrestrial wildlife, linkages out-
side riparian areas may be required to maintain connectivity
for non-associated upland species (McGarigal and McComb
1992).    

Corridors (also referred to as conservation corridors,
wildlife corridors, or dispersal corridors) are intended to per-
mit the direct spread of many or most taxa from one region
to another (Brown and Gibson 1983 as cited in Noss 1991).
They should facilitate foraging movements, seasonal migra-
tions, dispersal and recolonization, and escape from distur-
bance (Saunders et al. 1991, Soulé 1991).  Whether or not
corridors actually provide connectivity will depend largely on
the species in question and its dispersal capabilities and
movement patterns across the landscape (Saunders et al.
1991).  Given the species-specific nature of this issue, gener-
alizations about the biological value of corridors are under
debate among the scientific community (Noss 1987,
Simberloff and Cox 1987, Simberloff et al. 1992, Franklin
1993, Beier and Noss 1998) (for further discussion see
Appendix A “Further Analysis”).  

MANAGING FOR OPTIMAL CORRIDOR WIDTH
An important design consideration when maintaining or

establishing habitat corridors is width.  Corridor width can
influence the dispersal behavior of species, resulting in
changes in home range size, shape, and use.  In addition, cor-
ridor width is positively correlated with the abundance and
species richness for birds, mammals, or invertebrates
(Lindenmayer and Franklin 2002).  As is true for other con-
servation thresholds, in general, the wider the better.  Wider
corridor bands are recommended to provide interior habitat
conditions, which allows for the movement and/or habita-
tion of interior species.  In addition, greater habitat area is

more likely to provide sufficient cover for species from preda-
tors, domestic animals, or human disturbance (Forman and
Godron 1981).  Corridors that are too narrow may consist
entirely of edge, thus, deterring the use by interior or area-
sensitive species or causing an increase in mortality from pre-
dation (Wilcove et al. 1986).

Although corridor width has been identified as an
important design element, few studies explicitly examined
minimum corridor width requirements.  This survey found a
limited number of studies that provide indirect evidence on
effective corridor sizes, however, none of the reviewed stud-
ies explicitly tested different corridor widths with the goal of
determining an optimal size.  Although they did not directly
examine recommended corridor width, three studies did find
corridor widths of 32 meters and 100 meters to encourage
the movement of butterflies and reduce species turnover rates
for breeding birds, respectively (Haddad and Baum 1999,
Haddad 1999 for butterflies; Schmiegelow et al. 1997 for
birds).

Data limitations on the relationship between corridor
width and species response prevent the development of rec-
ommendations on optimal corridor size.  For any given set
width, corridor effectiveness will vary with other attributes,
such as length, habitat continuity, habitat quality, and topo-
graphic position in the landscape, among other factors
(Lindenmayer and Franklin 2002) (see “Other Corridor
Design Considerations”).

First and foremost, land use planners should strive to
limit the degree of isolation between existing habitat patches
and optimize the natural connectivity to allow for the disper-
sal of sensitive native species through the most appropriate
means.  This may be done by establishing habitat corridors,
maintaining specific structural conditions within the land-
scape, or setting aside stepping stone patches (Lindenmayer
and Franklin 2002) (see “Inter-patch distance”).

28 A riparian corridor is a strip of vegetation adjacent to an aquatic system that connects two
or more larger patches of habitat through which an organism is likely to move (Fischer et al.
2000). Corridors are not only riparian but also can be positioned in upland environments as
well.

CORRIDOR

Habitat Patch

Habitat Patch

Habitat Patch

Habitat Patch Habitat Patch

h

STEPPING STONES

Diagram 6. Habitat Connectivity. Habitat connectivity can be increased
by the protection of stepping stone patches or by the establishment of a
corridor. Modified from Dramsted et al. (1996), Landscape Ecology
Principles in Landscape Architecture and Land-Use Planning, p. 37.  
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Simultaneously, land use planners should minimize the con-
nectivity of artificial habitats like clearcuts, agricultural
fields, and roadsides that tend to spread exotic and pest
species (Noss 1991).

OTHER CORRIDOR DESIGN CONSIDERATIONS
Corridor width is one important factor that determines

whether a corridor will enhance landscape connectivity.
Other factors to consider are the condition of the landscape
matrix, the distances between remnant patches, and the
extent and configuration of the corridors themselves.

Condition of landscape matrix: The landscape matrix in
which corridors are embedded greatly influences corri-
dor use.  If conditions in the matrix are suitable (e.g.,
sufficient original vegetation cover exists), then species
reliance on corridors may be minimized.  On the other
hand, if matrix conditions are inhospitable or degraded
(e.g., are highly developed or fragmented; have disrupt-
ed ecological processes or disturbed conditions; or are
highly invaded by exotic species), then corridor systems
linking remnant patches may be required to retain land-
scape connectivity (Rosenburg et al. 1997 as cited in
Lindenmayer and Franklin 2002).  Given that land use
planners often work in extensively developed or develop-
ing areas, the latter case is the most likely.
Understanding the relationship between the landscape
matrix and the movements of target organisms will be

fundamental in determining the best placement of corri-
dors to enhance connectivity (Lindenmayer and
Franklin 2002).

Inter-patch distance: The distance between remnant
patches will affect the conservation value of corridors.
When distances between remnant patches are short as
compared to the movement ability of target species, a
stepping stone approach may be the most effective
mechanism for promoting dispersal (see “Patch loca-
tion/configuration”).  On the other hand, if the distance
separating habitat fragments is relatively far, corridors
may be the right mechanism to provide landscape con-
nectivity (Haddad 2000).

Corridor configuration and extent: Networks of inter-
secting corridors may provide for more effective migra-
tory pathways, allowing greater opportunities for animal
foraging and predator avoidance (Forman and Godron
1981).  Ideally, a corridor would “encompass the entire
topographic gradient and habitat spectrum from river to
ridgetop” (Noss 1991).  Such an expansive corridor net-
work may allow for the representation of different native
habitat and land cover types in a region.  In addition,
having such a broad system of corridors would help
enhance overall resiliency in case of the destruction of
individual corridors by unexpected disturbances (Noss
1991). 

The following summarizes findings from a select sample of scien-
tific papers pertinent to species and ecosystems in the United
States on critical thresholds related to minimum habitat patch
area, proportion of suitable habitat, edge influence, and riparian
buffer width.  Recommendations are based on the goal of captur-
ing 75 percent of the requirements found for species, communi-
ties, and habitats surveyed; thus, the third quartile was used by
calculating the value for which 75 percent of the threshold values
lie below this value (after numerical ranking). These guidelines
should be interpreted very cautiously because they are based on
a small sample, and may not be applicable for specific species,
habitats, and geographic settings of concern.  Land use planners
and land managers should consider these results as a baseline
from which to launch more tailored and in-depth assessments.
Habitat Patch Area
In general, land use planners should strive to maintain and pro-
tect habitat patches greater than 55 hectares (137.5 acres).
The goal should be to maintain larger parcels greater than 2,500
hectares (or about 6,175 acres) to protect more area-sensitive
species.
Proportion of Suitable Habitat
In general, land use planners should strive to conserve at least
20 percent up to 50 percent of the total landscape for wildlife
habitat, where possible.‡ The conservation of greater propor-
tions of habitat—such as a minimum of 60 percent—may be
needed to sustain long-term populations of area-sensitive
species and rare species.

Edge Influence
In general, to avoid the negative effects of edges on habitats,
land use planners should consider establishing buffer zones up
to at least 230 to 300 meters from the periphery of edges.
Riparian Buffer Width
In general, land use planners should plan for riparian buffer
strips that are a minimum of 25 meters in width to provide for
nutrient and pollutant removal; a minimum of 30 meters to pro-
vide temperature and microclimate regulation and sediment
removal; a minimum of 50 meters to provide detrital input and
bank stabilization; and over 100 meters to provide for wildlife
habitat functions.  To provide water quality and wildlife protec-
tion, buffers of at least 100 meters are recommended.
Landscape Connectivity
Land use planners should strive to reduce the distances between
habitat patches and to optimize the natural connectivity of the
landscape.  This may be done by establishing habitat corridors
that connect previously isolated patches; by maintaining the nat-
ural, structural conditions within the landscape; or by setting
aside stepping stone patches.  Simultaneously, land use plan-
ners should minimize the connectivity of artificial habitats like
clearcuts, agricultural fields, and roadsides.

‡ The 50 percent recommendation is based on capturing 75 percent of the threshold values
surveyed; 20 percent is based on capturing 50 percent of threshold values surveyed. The lat-
ter recommendation is provided because land use planners are often working in highly devel-
oped regions where protecting 50 percent or more of the landscape is impractical.

BOX 5.  CONSERVATION THRESHOLDS: A STARTING POINT
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THE ROLE OF THE SCIENTIFIC COMMUNITY

More scientific research is needed to help inform
specific land use decisions being made everyday in
the United States—decisions that significantly

determine the future of domestic biodiversity.  This survey of
the scientific literature found that out of all land manage-
ment strategies geared toward reducing the effects of urban-
ization and sprawl, the most substantial guidance available is
on how to best develop riparian buffers.  Conversely, science
offers very little consensus opinion to land use planners on
how to determine which habitat patches to conserve and
where; the amount of habitat to protect in a region or con-
versely the maximum
amount of impervious
surface to allow; the
ways in which to miti-
gate against the nega-
tive consequences of
habitat edges; or how
best to design and plan
for corridors.  In addi-
tion, because develop-
ment will continue to
occur and because pri-
vate lands are increas-
ing becoming more
important in species conservation, more information is need-
ed on the level of compatibility of the various types and com-
binations of land uses with biodiversity.  To better inform
decisionmaking, the scientific community needs to provide
more specific information to land use practitioners on how
to implement ecologically conscious growth.

In addition, scientists should address the taxonomic bias
in the literature.  A recent review of 134 papers on habitat
fragmentation found that over half of the research focuses on
birds, the vast majority being songbirds. Mammals and
plants come second, making up about 18 percent; inverte-
brates and reptiles/amphibians are the most understudied,
with only 9 percent and 4 percent, respectively (McGarigal
and Cushman 2002).  Our survey found similar results. Most
of the fragmentation research used for this study looks at the
effects of fragmentation on bird species and, to a lesser
extent, mammals.  Sixty-six percent of the surveyed research
on edge effects; 57 percent on patch area; 44 percent on pro-
portion of suitable habitat; and 32 percent of the wildlife
papers on buffers measured effects on bird species.

Mammals made up 24 percent of the research on proportion
of suitable habitat; 21 percent on patch area; 11 percent of
research on buffers; and 9 percent on edge effects.  Fish,
invertebrate, and plant response made up anywhere from
zero to 13 percent of the research. This focus has left partic-
ularly large gaps in research on reptiles and amphibians,
invertebrates, and plants.  

If the scientific community wishes to help curtail the loss
and endangerment of species, then it will need to start
addressing other taxonomic groups.  The most at-risk species
in the United States are flowering plants and freshwater
species.  In terms of species numbers, flowering plants have
by far the greatest number of at-risk species (over 5,000

species are at-risk).  In terms
of the proportion, species
that rely on freshwater habi-
tats—mussels, crayfishes,
stoneflies, amphibians, and
fishes—exhibit the highest
level of risk.  With only 14
percent of bird species being
at risk and 16 percent of
mammal species, these
groups are the least threat-
ened (Master et al. 2000).

Above all else, this liter-
ature search reveals the

inadequacy of the information currently available for land
use planners to use in their day-to-day decisions, which have
profound effects on biological diversity.  The scientific com-
munity should be commended for developing theories, such
as metapopulation concepts, which have important implica-
tions for applied management like endangered species recov-
ery. However, due to the simplified assumptions implied
within metapopulation models, their application to real
landscapes is severely limited (Fahrig and Merriam 1994).  In
addition, whether metapopulations are actually common in
real landscapes is largely unknown (Lindenmayer and
Franklin 2002).  Similarly, the SLOSS debate on whether a
single large reserve is better than a group of small ones, which
consumed the academic community for many years, failed to
produce concrete management recommendations (Forman
1995).29 In order for ecological principles to be put into
practice, land use professionals will need general rules of
thumb and specific guidelines to implement on-the-ground. 

RECOMMENDATIONS FOR FUTURE RESEARCH AND ACTION

29 SLOSS stands for Single Large Or Several Small, which refers to whether conservation
reserves are best designed as one large tract of protected land versus several smaller tracts
of the equivalent area (Meffe and Carroll 1997).

“Fragmentation effects are difficult to translate into
management rules-of-thumb for several reasons: 
(1) they tend to be highly specific to the taxa, spa-
tial scales, and ecological processes considered;
(2) they vary according to the landscape type and
its structure; and (3) their influence on species dis-
tribution and abundance may be obscured by local
effects such as changes to certain microhabitat
features (e.g., habitat degradation).”

Villard (2002), Ecological Society of America, Ecological Applications
12(2), p.319  
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Only about 10 percent of the papers reviewed in this sur-
vey provided quantitative information useful for developing
conservation thresholds relevant to land use planning.
Similarly, most of the papers published in the Journal of
Applied Ecology during a large proportion of the last 30
years have been devoid of practical applications or manage-
ment recommendations (Pienkowski and Watkinson 1996).
Given the complexity surrounding habitat fragmentation, it
is understandable that the scientific community is apprehen-
sive about presenting or extrapolating research findings such
that they can be easily applied to land use planning and man-
agement.  Scientists even warn that providing general thresh-
olds “may be more dangerous than useful because many
species can be lost if the threshold is determined by averag-
ing over the requirements of many species” (Mönkkönen and
Reunanen 1999).

Without adequate information on land use thresholds,
land use decisionmaking will continue to be uninformed by
the best available science.  Although reaching consensus in
the scientific community on these thresholds may be an
impractical goal, if enough resources are directed to answer
specific land use threshold questions, research results may
begin coalescing on some general range of values, which
would provide useful guidance.  Hopefully, this literature
review will prompt scientific research that is relevant to and
usable by everyday land use practitioners.

THE ROLE OF THE POLICY COMMUNITY

Although more scientific study is needed to provide eco-
logically-based and scientifically defensible advice on land
use planning and land management thresholds, substantial
research has already been conducted.  The policy communi-
ty could play a more active role as a conduit between the sci-
entific community and land use planners—to help interpret
the available research, help with dissemination, and commu-
nicate back to scientists on research gaps and needs.
Periodical reviews of the literature, such as this survey, should
be conducted to provide land use planners and land manage-
ment practitioners with the most up-to-date and best avail-
able scientific information.  In addition, where possible, sci-
entific research will need to be translated into easily applied
management recommendations. To ensure that land use
decisions are well-informed, mechanisms should be in place
to communicate current scientific understanding to the gen-
eral public. Scientific institutes, such as the National
Academy of Sciences, among others, should conduct or com-
mission studies on areas where particular research gaps are
found.  Clear arguments, particularly those that are econom-
ically based, need to be conveyed to the land use communi-
ty so that they understand why they should make land use
decisions with biodiversity in mind.

THE ROLE OF THE LAND USE 
PLANNING COMMUNITY

The failure of land use planners to communicate their
needs to the scientific community may be another reason
that science inadequately addresses land use planning con-
cerns.  Land use practitioners should be encouraged to better
communicate with scientists about the type of information
that they need and in what format it would be most useful.
An exchange about what is working on-the-ground and what
is not, and about public concerns regarding land use alter-
ation and biodiversity, would be of great benefit.  

However, given the diverse habitat requirements of
species and the great uncertainty and unpredictability of
species and ecosystem response to habitat alteration, land use
planners should not wait for the development of the magical
threshold value before applying known general ecological
guidelines, such as those presented by the Ecological Society
of America’s Land Use Committee.  To ensure that our natu-
ral resources will be conserved for future generations, spatial
planning needs to proceed immediately using the best avail-
able information.

Land use planners should err on the side of caution and
adopt the most conservative threshold ranges, particularly
since factors, such as global climate change, are likely to
intensify land use impacts.  The future change of our climate
—predicted to rise globally by an average about 4°
Fahrenheit  (2° Celsius) by the year 2100—is likely to alter
the level and timing of temperature and precipitation and to
increase the frequency of environmental disturbances (like
floods, droughts, hurricanes, and fires), causing shifts in suit-
able ecosystem and species ranges, as well as the composition
of species and flows of energy and nutrients (Field et. al.
1999).  For species and ecosystems to be able to withstand
such drastic environmental perturbations, sufficient intact
and well-connected habitat will be essential.  Thus, larger
patch sizes, greater habitat area, wider buffers, and more cor-
ridors are likely required under future global warming than
presented in this review.

Land use planners should realize that, ultimately, there is
no replacement for site-specific assessments.  It is both diffi-
cult and often misleading to develop thresholds that general-
ize across landscapes and across ecoregions (Mönkkönen and
Reunanen 1999).  Since thresholds will fail to be meaningful
when generalized across landscapes, ecosystems, and states,
thus unable to capture the unique variation in nature, land
use planners and managers need to work in close collabora-
tion with ecologists (Mönkkönen and Reunanen 1999).
Land use professionals should use the articles and research
highlighted in this review only to the extent that they are
appropriate for their region and to launch more in-depth
analyses.  This review predominately covers thresholds and
guidelines for planning at a large (coarse) scale.  This report,
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however, does not focus on the conservation of rare or local-
ized species or habitat types, and species other than birds and
mammals. It does not provide guidance on how to protect
lands of greatest biological value.  Rather than simply adopt-
ing the types of measures discussed in this review, land use
planners should collaborate with scientists to better protect
small patch communities and local-scale species and to bet-
ter identify site-specific and regional conservation needs.

Although land use planners are asked to make local, site-
specific decisions on a daily basis, it is still vital to maintain
a landscape perspective.  Numerous, small development pro-
jects that independently may not contribute to significant
habitat loss, degradation, or fragmentation, may cumulative-
ly have devastating consequences.  Site-specific land use deci-
sions would be more ecologically mindful if better informed
by scientific information. Yet, to really make a difference for

biodiversity, land use planners will need to begin considering
their cumulative and landscape-scale impacts.  

Biodiversity needs to be a central component directly
considered in all land use and community planning projects.
An overarching land use vision with a statewide or county-
wide blueprint for protecting ecosystems, representative and
rare species, and broader patterns of biodiversity would serve
as an important framework to guide the implementation of
the specific thresholds outlined in this report.  For example,
Florida developed a model that identifies areas with priority
conservation significance and landscape linkages (i.e., corri-
dors) captures most of the major ecological communities and
known occurrences of rare species for the entire state (Hoctor
et al. 2000).  Conserving regional biodiversity and account-
ing for land use impacts over a large scale—both spatially and
temporally—will likely require inter-municipal cooperation
and state-level leadership, as in the case of Florida.

Diagram 7. Florida Ecological Network. Results from the Florida Statewide Greenways GIS decision support model. Courtesy of the
University of Florida.
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Land use decisions have profound effects on biological
diversity.  Land use planners, however, have many
opportunities to tailor their traditional land use tools

to better address biodiversity conservation.  To the extent
possible, planning decisions should be based on the best
available science.  Although the current scientific literature
provides much guidance to land use planners on how to
incorporate ecological knowledge into their actions, signifi-
cant gaps exist in the information provided by the scientific
community.  The more that is known about how human
mediated fragmentation impacts ecosystems, the more it is
revealed that species and communities interact in complex,

dynamic, and often unpredictable ways on multiple tempo-
ral and spatial scales.  For science to meet the needs of local
land use planners, on-going and dedicated collaboration
needs to exist between the scientific, policy, and land use
planning communities.  Although a consensus may never
develop in the scientific community on broad conservation
thresholds, more effective and targeted guidance can be
developed to help land use planners make more ecologically
informed decisions.  Without this information, little incen-
tive exists for land use planners and land managers to factor
biodiversity considerations into their decisions at all.

CONCLUSION
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Titles and abstracts of 1,458 papers within scientific
and land use planning journals were reviewed to
determine whether they provide specific information

on conservation thresholds that could help guide land use
planning in the United States.  A total of 160 papers (11 per-
cent) were selected for inclusion in this study: 20 papers with
quantitative information on minimum patch area; 27 papers
on minimum proportion of suitable habitat; 25 papers on
edge width distance; and 88 papers on minimum buffer
width.30

A CLOSER LOOK AT HABITAT PATCH SIZE

Only 20 papers were found in the scientific literature to
provide specific information on minimum patch area
requirements pertaining to ecoregions within the United
States; these papers provided 28 citations on threshold patch
size.31 The majority of papers that address habitat patch size
focus primarily on estimating the area of habitat needed to
sustain specific target species—as measured by species occur-
rence, population densities, or breeding success—and to a
lesser extent species diversity or community assemblages.  As
reported in previous literature reviews, little is known about
the amount of patch area needed to maintain essential
ecosystem functions, such as primary productivity, nutrient
and hydrologic cycling, or disturbance regimes (Forman
1995). 

This survey reveals a taxonomic bias in scientific litera-
ture.  Out of the total 28 citations, 16 citations (57 percent)
pertain to birds and six citations (21 percent) to mammals.
Minimum patch area requirements reported in the literature
ranged from one hectare to over 2,500 hectares for birds, and
from one hectare to over 220,000 hectares for mammals.
Only two studies provide three relevant citations on patch
size requirements for plant species: an estimated two hectares
needed to sustain a representative tree community type
(Elfstrom 1974), and at least 10 hectares needed to conserve
an old growth forest if surrounded by secondary forest, or
100 hectares if surrounded by clearcuts (Harris 1984).  Two
additional studies provide patch area information for inver-
tebrates, which indicate that habitat requirements for inver-
tebrates may range from a minimum of 0.0004 hectares (four
meters squared) up to one hectare.  One study provides

information for fishes, predicting a 50 percent chance of bull
trout occurrence in watershed patches larger than 2,500
hectares (Rieman and McIntyre 1995).

Reported habitat patch size thresholds vary widely, even
within the same taxonomic group and for the same species.
This lack of convergence on minimum critical patch size
reflects the large range of habitat needs exhibited by different
species across different ecosystems and that species response
to habitat fragmentation is very complex.  This natural and
inherent complexity is compounded by the lack of consisten-
cy in methodology researchers used to measure minimum
habitat requirements—with differing study designs as well as
parameters measured.  Minimum patch area is commonly
determined for target species by measuring species occur-
rence on a site, species densities, or nesting/breeding success.
To a lesser extent studies evaluate the persistence of species
diversity or community assemblages.  Since different param-
eters are measured, different results are produced.  For exam-
ple, according to this survey, neotropical wood thrushes
require anywhere from one hectare up to greater than 2,500
hectares of habitat depending on the variable measured (evi-
dence of breeding versus nesting success and occurrence of
nesting predation) (Robbins et al. 1989 and Trine 1998).     

By in large, this review reiterates a viewpoint expressed
by the scientific community several years ago: simply not
enough is known about minimum critical size that should be
protected in order to maintain species diversity and species
composition in any given ecosystem (Lovejoy and Oren
1981 as cited in Saunders et al. 1991; Noss and Harris 1986).
Given the lack of information on the habitat patch size
requirements of species, communities, or ecosystems in the
United States, land use planners should work with land and
natural resource agencies and local scientists to identify the
habitat patches most in need of protection.   

A CLOSER LOOK AT PROPORTION 
OF SUITABLE HABITAT

Twenty-seven papers were encountered within the scien-
tific literature reporting extinction or habitat fragmentation
thresholds on the proportion of suitable habitat needed for
an array of species.  The papers surveyed provide 26 different
estimates of the amount of habitat needed, depending on the
species and taxa in question, and the parameter measured.
The majority of findings—42 percent (11 citations)—relate
to the amount of habitat recommended to maintain bird

APPENDIX A. FURTHER ANALYSIS

30These numbers only include papers that provided specific threshold information, which was
factored into the assessment (see Appendices). Review papers and background papers are
not included in these figures if they failed to provide relevant quantitative information.
31 Because papers provide multiple findings/recommendations related to minimum patch area
size requirements, the number of papers does not necessarily equal the number of citations.
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species or populations.  Based on this review, bird species in
the United States may require anywhere from 5 percent to 80
percent of suitable remaining habitat.  

The second most commonly researched group is mam-
mals.  About 23 percent of the findings (six citations) per-
tained to mammalian response to habitat loss and habitat iso-
lation, which suggests that this taxonomic group may require
anywhere from 6 percent to 30 percent of suitable habitat.
This range, however, should not be considered representative
for all mammalian groups, because it only includes small
mammals (e.g., chipmunks, rabbits, squirrels) (see Appendix
C).  An important focal group—wide-ranging predators and
large-bodied mammals—failed to be represented in this
select review, thus, the proportions are skewed to the smaller
range relevant to smaller bodied mammals. 

Four studies (five citations) provide thresholds for inver-
tebrates, ranging from 20 percent up to 60 percent of
required protected habitat.  Additionally, four studies base
their findings on models predicting response by hypothetical
species, which reveal that threshold responses may occur any-
where from as large a range as 20 percent to 90 percent of
habitat loss.

As revealed by the diverse range of values offered by sci-
entists, it is clear that no common threshold exists for the
amount of habitat needed to support different populations of
species or needed to minimize the negative effects of habitat
fragmentation in a landscape.  The lower range of propor-
tions (e.g., 5 to 30 percent) tend to be habitat fragmentation
thresholds, as determined by evidence that species are in
some way negatively affected by habitat loss or habitat isola-
tion.  A significant proportion of these studies is based on
predicted species response to habitat loss and fragmentation
by models (at least seven of the citations).  The larger propor-
tions (e.g., 60 to 80 percent) tend to be based on models that
predict the amount of habitat needed to sustain long-term
species persistence or to prevent the consequences of exten-
sive habitat fragmentation in a landscape. 

Given the sparse and diverse findings, land use planners
should apply these thresholds with great caution.  As report-
ed in earlier reviews, most of the habitat fragmentation stud-
ies are performed during short time periods (e.g., one or two
seasons), and only provide a snap shot of how species may
respond to habitat loss and isolation (Andrén 1994).  In
these studies, the damage to populations resulting from habi-
tat alteration could have occurred previously (Mönkkönen
and Reunanen 1999)—particularly for historically modified
landscapes like eastern deciduous forests (Meier et al. 1995,
Mitchell et al. 2002).   Thus, the long-term consequences of
fragmentation are likely not revealed in this select review
because a time lag often exists between the fragmentation of
a landscape and the associated response by species, popula-
tions, or systems (Andrén 1994). 

CLOSER LOOK AT EDGE INFLUENCE

Twenty-five studies surveyed provide 32 findings on the
distance that edges might affect habitats in the United States.
Like the other conservation thresholds, the focal species of
choice is birds.  Sixty-six percent of the findings (21 citations
within 12 articles) measure the influence of edges related to
bird response, revealing that edge influence for birds extends
anywhere from about 16 meters to up to almost 700 meters.
Studies measuring bird or bird nest abundance report that
edge effects extend between 180 and 687 meters where as
those measuring predation and nesting success range from 50
to beyond 600 meters.  Bird response (e.g., flushing distance)
to disturbances such as roads and human traffic extends from
16.27 meters to 300 meters.

Secondarily, the influence of edges is measured by abiot-
ic responses.  Edge effects based on microclimate conditions
—such as changes in light, temperature, humidity, nutrients,
and moisture—are found to extend from eight meters up to
240 meters based on five studies (six citations) (Ranney et al.
1981, Laurance and Yensen 1991, Brothers and Spingarn
1992, Matlack 1993, and Chen et al. 1995).   

To a lesser extent, the scientific literature provides infor-
mation on the effects of edges on mammals and plants.
Three studies have found that mammals avoid edge environ-
ments from at least 45 meters to 900 meters.  For example,
studies reveal that wide-ranging grizzly bears are displaced
from 100 to 900 meters due to traffic along roadways (Mills
1996, Miller et al. 2001, and Weaver et al. 1996).  One study
provides evidence on the influence of edges on plant commu-
nities, finding that almost no recruitment of seedlings occurs
within 65 meters of forest clear-cut edges in Oregon (Jules
1998).

Within this review, no single study is found to report
edge influence in relation to invertebrate communities in the
United States.  As is true for the other thresholds, research
has been conducted more extensively in tropical forests out-
side of the United States, and may serve to address knowl-
edge gaps.  For example, a study in Brazil reveals that edge
effects may be more intense for invertebrate groups.  Edge
effects may penetrate up to 50 meters as measured by bird
density; 80 meters as measured by soil moisture; 100 meters
as measured by canopy height, foliage density, and leaf-litter
invertebrate abundance and richness; 200 meters as mea-
sured by leaf-litter invertebrate species composition and inva-
sion of disturbance adapted beetles; and 250 meters for inva-
sion of disturbance-adapted butterflies (Laurance et al.
1997).  

To get a better handle on the intensity of edge influence
in the United States and, consequently, the amount of habi-
tat needed to reduce the effects of edges and related distur-
bances, land use planners will need more site-specific guid-
ance from ecologists.  Land use planners and land managers
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will also need more information on effective measures that
can be taken to better “soften” the many different types of
edges affecting the large array of habitat types in the United
States.

A CLOSER LOOK AT BUFFER WIDTH

Eighty-eight papers (156 citations) are found to provide
recommendations on riparian buffer widths.32 Of all the
conservation thresholds surveyed, buffer prescriptions are the
most studied and best documented.  Substantial research has
been conducted on the effective size of buffers, particularly
related to water quality considerations, to assist regulatory
and land management agencies in developing scientifically
sound minimum buffer width (Castelle et al. 1994).  Several
literature reviews have been conducted to help inform state
and local governments in developing riparian protection
plans and ordinances (see Johnson and Ryba 1992, Furfey et
al. 1997, Wenger 1999, Fischer 2000, Fischer et al. 2000,
and Metro 2001).  In April 2000, the U.S. Army Corp of
Engineers released national recommendations for riparian
buffer strip and riparian corridor design (Fischer and
Fischenich 2000). This baseline research significantly
informed the buffer width recommendations in this report.

One review offers the following buffer prescriptions: a
three to 10 meter buffer to provide detrital input; 10 to 20
meters for stream stabilization; five to 30 meters for water
quality protection; 20 to 150 meters for flood attenuation;
and 30 to 500 meters or more for riparian habitat (Fischer
and Fischenich 2000).  The Institute’s review reveals wider
buffer ranges to provide a variety of functions, with a range
of six to 32 meters to reduce noise and wind damage; 10 to
52 meters to stabilize stream banks; three to 80 meters to
provide detrital input; four to 92 meters to remove nutrients
and pollutants; three to 122 meters to remove sediments; 20
to 150 meters to provide flood attenuation; 10 to 300 meters
to regulate temperature and microclimate; and three to 1600
meters to provide wildlife habitat (see Appendix E).  

Findings in this review primarily relate to river and
stream systems, however, a small number of papers explicitly
address wetlands (see Buhlmann 1998 and Joyal et al. 2001).
Although not all wetlands lie within riparian zones (e.g., iso-
lated wetlands), they serve as vital resources and provide
essential functions, such as flood storage, water purification,
sediment trapping, and wildlife habitat (Mitsch and
Gosselink 1993).  Thus, placing buffers around these areas to
protect them from nearby development activities is also
advised.

Predicting the adequacy of a buffer strip to provide suf-
ficient wildlife habitat and to protect natural species diversi-
ty is quite challenging.  The width recommendations primar-

ily focus on birds and are based on various methods—rang-
ing from determining species presence or nesting within the
area to determining species abundance, diversity, or commu-
nity assemblages.  Few studies attempt to measure species
survival over time; thus, it is questionable whether the rec-
ommended buffers will ensure persistence of the target
species and communities over the long-term.

As mentioned above, the actual effective size and ade-
quacy of any given buffer is determined by the management
target, as well as other site-specific factors, such as site and
watershed conditions; intensity of adjacent land use; slope
steepness; stream order; soil characteristics (depth, texture,
erodibility, moisture, pH); floodplain size and frequency of
inundation; hydrology; buffer characteristics (e.g., type, den-
sity, and structure of vegetation, and buffer length); and
landowner/manager objectives (Naiman et al. 1993, Castelle
et al. 1994, Wenger 1999, Todd 2000).  For example, larger
buffers may be necessary when the buffer strip is in poor con-
dition (e.g., comprised of sparse exotic vegetation, dis-
turbed/erodible soils); is located on steep bank slopes (e.g.,
greater than 10 percent to 15 percent);33 is surrounded by
intense land uses; or is located within watersheds with
increased impervious surfaces that results in high nutrient,
chemical, and sediment inputs, and runoff (e.g., adjacent to
urban/suburban areas or intensive agricultural farmland).
Such factors should be considered when evaluating the appli-
cability of the general recommended buffer sizes (see Wenger
1999, Fischer and Fischenich 2000, Metro 2001).  In addi-
tion, management decisions should not only be based on
site-specific characteristics but also on basin or watershed
level needs to maintain the hydrologic connectivity and nat-
ural variability of these systems (Naiman et al. 1993, Pringle
2001). 34

A CLOSER LOOK AT CORRIDORS

To determine whether or not corridors are effectively
enhancing species conservation, scientists evaluate whether
(and how) patch occupancy, species abundance and diversity,
colonization, and immigration rates change with and with-
out the presence of corridors (Beier and Noss 1998).

Many studies lend support to the premise that corridors
retain important species or provide faunal habitat (Bennett
1998).  Few studies, however, provide clear evidence that cor-
ridors are required for species movement in landscapes
(Hobbs 1992).  Many species simply do not respond or
require corridors (Rosenburg et al. 1997, Bowne et al. 1999,
Hannon and Schmiegelow 2002).  For example, male-hood-
ed warblers preferentially travel across open areas, even in

32 Some papers recommend multiple buffer widths, for example, they may suggest different
widths for different species or functions of concern. Thus, the number of papers does not
equal the number of citations.

33 Herson-Jones et al. 1995 (found that greater than 10 percent slopes are steep slopes) and
Nieswand et al. 1990 (found that greater than 15 percent slopes are steep) (as cited in
Wenger 1999).
34 Hydrologic connectivity refers to water-mediated transfer of matter, energy, or organisms
within or between elements of the hydrologic cycle (Pringle 2001).
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landscapes with corridors connecting habitat patches (Norris
and Stutchbury 2001).  For species like the Northern spotted
owl, which has been found to disperse randomly, the pres-
ence of corridors will likely not enhance its survival (Murphy
and Noon 1992 as cited in Lindenmayer and Franklin 2002).
Because of the complexity of animal behavior, land use plan-
ners should not assume that establishing corridors between
habitat patches in a region will automatically guarantee
enhanced and effective dispersal and recolonization among
the separated wildlife populations.

The benefits of corridors should be weighed against their
potential repercussions. Scientists warn that corridors may
potentially transmit diseases, fires, or other catastrophes
among habitats and populations, as well as increase invasions
by non-native invasions or exposure to predation (Simberloff
and Cox 1987, Noss 1991, Noss and Cooperrider 1994).  To
add to the complexity of this issue, many corridor studies—

both those that claim corridor benefits and those that claim
costs—suffer from design flaws that limit their ability to dis-
cern the real conservation value of corridors (Beier and Noss
1998).  

A recent scientific review is able to shed some light on
the corridor controversy; a review by Beier and Noss (1998)
presents evidence from well-designed studies that suggest
that corridors seem to be providing sufficient connectivity to
enhance the viability of wildlife populations.  Conversely, a
lack of evidence backs the assertion that the presence of cor-
ridors actually has a greater adverse impact than their absence
(Beier and Noss 1998, Hobbs 1992).  Although wildlife cor-
ridors should not be automatically assumed to be an essential
component of all land conservation strategies (Lindenmayer
and Franklin 2002), planners should consider corridors as
one potentially valuable conservation tool (Beier and Noss
1998, Hobbs 1992). 
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Minimum patch area requirements (in hectares) found within the scientific literature (as of December 2001) to maintain pop-
ulations or communities of animal or plant species in the United States.  One hectare is about 2.5 acres.  

APPENDIX B. MINIMUM PATCH AREA

TAXA PATCH AREA FINDING STATE CITATION

Birds

> 1 ha Minimum area requirement for breeding wood thrush-
es is 1 ha, although nesting success on fragments of
that size would be extremely low.

MD, PA,
VA, WV

Robbins et al. 1989

> 1 Five species of chaparral-requiring birds were sup-
ported by census plots larger than 1 ha.

CA Soulé et al. 1992

> 2 ha (seed-eating birds)
> 40 ha (insect-eating
birds)

The minimum area point1 for insect-eating birds was
estimated to be at least 40 ha, in contrast to 2 ha
for seed-eating birds.  This is interpreted as the habi-
tat size needed to support a representative bird com-
munity.

NJ Forman et al. 19762

Galli et al. 19762

> 5 ha (marsh) Ten of the 25 species did not occur in marshes less
than 5 ha. 

IA Brown and Dinsmore 1986

> 5, > 30, > 40, > 50, 
> 55 ha

Estimates of minimal area requirements for five area-
sensitive species ranged from 5 to 55 ha. 

IL Herkert 1994

> 6.5 ha, 15.4 -32.6 ha Black tern required 6.5 ha in heterogeneous land-
scapes, but required 15.4 - 32.6 ha in homogeneous
landscapes.

SD Naugle et al. 1999

> 10 ha (forest) Forest patches > 10 ha had much greater bird diver-
sity than patches < 3.25 ha

GA McIntyre 1995

> 80 ha In fragments < 80 ha, nesting success was low
(43%), and nest predation was high (56%).

PA Hoover et al. 1995

< 20 ha,
>2500 ha

Based on a study of cowbird parasitism and nest pre-
dation on 3 large forest tracts (1100 - 2200 ha) in
southern Illinois, maintaining wood thrush popula-
tions in the midwest might require > 2500 ha
reserves. In the east even a small woodlot (< 20ha)
may sustain a population.

IL Trine 1998

Mammals

> 1 ha Control plots larger than 1 ha supported most
species of rodents.

CA Soulé et al. 1992

> 5 ha Cottontails may become vulnerable to extinction if
large patches > 5.0 ha are not maintained. 

NH Barbour and Litvaitis 1993

> 10 ha Fragments < 10 ha did not support populations of
native rodents.  

CA Bolger et al. 1997



46 | THRESHOLDS

TAXA PATCH AREA FINDING STATE CITATION

> 900 ha 
(9 km2)

More than 80% of bear sitings occurred in blocks of
undisturbed habitat > 9 km2.

MT Mace et al. 19963

> 2800 ha 
(28 km2)

Grizzly bears in the Yellowstone ecosystem should have
security blocks 28 km2 in size.

MT, ID,
WY

Mattson 19903

> 220,000 ha
(2200 km2)

Model predicts low extinction risk for cougars in areas
as small as 2200 km2, but w/ increasing risk with little
immigration.

CA Beier 1993

Fishes

> 2500 Found support that suitable patch size (as defined by
watersheds above 1600 m elevation) influences the
occurrence of bull trout. Predicted probability of occur-
rence is 0.5 for patches larger than 2500 ha. 

ID Rieman and McIntyre 1995

Invertebrates

> .0004 ha
(4m2)

Vegetation patches > 4m2, as well as open areas, were
important to the distribution and abundance of carabid
beetles.

OH Crist and Ahern 1999

> 1 ha Observed minimum patch size for occupancy by popula-
tions of 3 butterfly species is 1 ha.

model Hanski 1994

Plants

> 2 ha (5 acres) Minimum area point1 for tree communities was estimat-
ed to be about 2 ha. 

NJ Elfstrom 19742

> 10, > 100 ha Conserving an old-growth forest might require 10 ha if
surrounded by comparable forest, but 100 ha if sur-
rounded by a clearcut.

— Harris 19844

— Indicates that the geographic location was not determined because the recommendation was cited secondarily from another review article.
model indicates that the research was conducted through modeling and therefore is not specific to any geographic area.
1 Minimum area point is the point on a species-area curve, which shows the relationship between species number and habitat area, where there is an abrupt change in the slope. The minimum
area point has been considered an index of how large a community must be to representative of the community type (Forman 1995).
2As cited in Forman 1995
3As cited in Weaver et al. 1996
4As cited in Franklin 1993
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Recommended minimum proportions of suitable habitat found within the scientific literature (as of December 2001) to main-
tain long-term persistence of viable populations or communities of species or to minimize the negative consequences of habitat
fragmentation in the United States.

APPENDIX C. PROPORTION OF SUITABLE HABITAT

TAXA PROPORTION OF
SUITABLE HABITAT

FINDING STATE CITATION

Birds

> 5% When < 5% of area was covered by habitat, there was an
effect on bird density.

WI Ambuel and Temple
19831

> 5% When < 5% of area was covered by habitat, there was an
effect on bird community.

— Howe 19841

> 8% When 8% of area was covered by habitat, there was an effect
on land bird community.

— Nilsson 19781

Nilsson 19861

> 10% When < 10% of area was covered by habitat, there was an
effect on species richness.

— Soulé et al. 19881

Bolger et al. 19911

>10-30% The negative effects of patch size and isolation on native
species may not occur until the landscape consists of only 10-
30% of the original habitat.

review Andrén 1994

> 15% When 15% of area was covered by habitat, there was an effect
on bird density.

— Askins et al. 19871

> 20% When 20% of area was covered by habitat, there was an effect
on bird community.

MD Lynch and Whigham
19841

> 22% When 22% of area was covered by habitat, there was an effect
on land bird community

— Whitcomb et al. 19811

> 50% Numerous species were more likely to inhabit wetlands in
landscapes where less than 50% of the upland matrix was
tilled.  

SD Naugle et al. 2001

> 60% A model assuming 60% suitable habitat suggests a high like-
lihood for the longterm persistence of Northern spotted owls.

model Lamberson et al. 1994

> 80% Metapopulation model predicted that the Northern spotted owl
population would go extinct if the proportion of old-growth for-
est was reduced to less than 20% of landscape.

model Lande 19884

Lamberson et al. 19924

Mammals
> 6% When 6% of area was covered by habitat, there was an effect

on chipmunk density.
— Henderson et al. 19851

> 6% When 6% of area was covered by habitat, there was an effect
on pika abundance.

— Smith 19741

Smith 19801

> 10% When < 10% of area was covered by habitat, there was an
effect on mammal species richness.

— Soulé et al. 19921

> 10% When 10% of area was covered by habitat, there was an effect
on Columbian ground squirrel presence/absence.

— Weddell 19911

> 10-30% The negative effects of patch size and isolation on the native
species may not occur until the landscape consists of only 10
–30% of the original habitat.

review Andrén 1994

> 15% When 15% of area was covered by habitat, there was an effect
on small mammal presence.

— Lomolino et al. 19891
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— Indicates that the geographic location was not determined because the recommendation was cited secondarily from 
another review article.
model indicates that the research was conducted through modeling and therefore is not specific to any geographic area.
review indicates papers that base recommendation on a survey of the literature.
1 As cited in Andrén 1994
2 As cited in Dooley and Bowers 1998
3 As cited in Fahrig 2001
4 As cited in With and Crist 1995

TAXA PROPORTION OF
SUITABLE HABITAT

FINDING STATE CITATION

Invertebrates

> 20% The threshold for changes in movement patterns of bee-
tles occurred at 20% coverage of cells. 

CO Wiens et al. 1997

> 20% Clover patches became significantly more isolated
below 20% habitat, which disrupted the predator forag-
ing behavior of ladybird beetles, decreasing their ability
to serve as biocontrol agents of aphids. 

model With et al. 2002

> 40% Habitat specialists of grasshoppers exhibited limited
movement and disjunct populations—which can affect
population persistence—when preferred habitat occu-
pied less than 40% of the landscape.

model With and Crist 1995

> 40, > 60% Rare species were disproportionately affected by frag-
mentation and did not occur in patches with less than
40% habitat. Over half of the species were never
observed in plots with less than 60% habitat remaining. 

OH Summerville and Crist 2001

Hypothetical
Species

> 10-30% As habitat loss continues beyond the threshold (occur-
ring somewhere in the range of 70-90% habitat loss)
decline in population performance should become
much more severe.  But model predicts that habitat
fragmentation begins to occur when about 60% of origi-
nal vegetation remains.

model Gardner et al. 19872

> 20% The threshold value of habitat amount is 20% habitat,
below which the effects of habitat fragmentation on
population persistence may become evident.

— Andrén 19943

Fahrig 19983

> 70% Models of forest landscapes forecast that patches of
old-growth forest can become fragmented even when
about 70% of the landscape cover remains.

model Franklin and Forman 1987

> 80% Terrestrial species with low demographic potential could
not persist in landscape even with 80% of suitable habi-
tat in landscape.

model Lande 19874
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Distances (in meters) that edge effects penetrate into habitats in the United States as found within the scientific literature (as of
December 2001), according to abiotic, bird, mammal, and plant response.

APPENDIX D. EDGE INFLUENCE

TAXA/SUBJECT EDGE INFLUENCE FINDING STATE CITATION

Abiotic

8 m Microclimatic differences ceased to exist beyond 8 m
into forest fragments.

IN Brothers and Spingarn 1992

13.3 m Model indicated that elevated soil temperatures may
extend up to 13.3 m from edge.

model Laurance and Yensen 1991

> 15 m In deciduous forest patches, microclimate changes
were estimated to extend at least 
15 m from the forest edge to the interior.

WI Ranney et al. 19812

50 m Significant edge effects were detected in light, temper-
ature, litter moisture, vapor pressure deficit, humidity,
and shrub cover, affecting the forest microenviron-
ment up to 50 m from the edge.  

PA, DE Matlack 1993

15-60 m (solar 
radiation)
> 240 m (humidity
and wind speed)

Solar radiation gradients extend 15–60 m into upland
old-growth forest and humidity and wind speed gradi-
ents at > 240 m.

— Chen et al. 19959

Birds
16.27 m, 16.95 m,
37.73 m

Maximum flushing* distance in response to pedestri-
ans and dogs was 16.27 m (American robin), 16.95 m
(vesper sparrow), and 37.73 m (western meadowlark).

CO Miller et al. 2001

50 m Predation and parasitism rates are often significantly
greater within 50 m of an edge.

— Paton 19943

50 m Murrelet nest success was higher when nests were
more than 50 m from the forest edge.

— Nelson and Hamer 19954

75 m Estimated that edge-related nest predation extended
75 m into forested buffer strip.

ME Vander Haegen and Degraaf
1996

75 m, 100 m For the majority of species found to have reduced
numbers near trails due to nest predation and brood
parasitism by brown-headed cowbirds, the zone of
influence of trails appears to be around 75 m; howev-
er, Townsend's Solitaires exhibited reduced numbers
as far as 100 m away from trail.

CO Miller et al. 1998

75 m, 125 m, 
140 m, 160 m, 
210 m, 300 m

Buffer zones that would prevent flushing by approxi-
mately 90% of the wintering individuals of a species
are: American kestrel, 75 m; merlin, 125 m; prairie fal-
con, 160 m; rough-legged hawk, 210 m; ferruginous
hawk, 140 m; and golden eagle, 300 m.

CO Holmes et al. 1993

100 m Flushing distances of waterbirds in response to pedes-
trians, all-terrain vehicles, automobiles, and boats,
indicate that human disturbance extends up to 100 m.

FL Rodgers and Smith 1997
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* Flushing distance is the distance that an animal may flee in response to a disturbance, such as in response to pedestrian or pets on a trail or vehicular traffic on roads.
— Indicates that the geographic location was not determined because the recommendation was cited secondarily from another review article.
model indicates that the research was conducted through modeling and therefore is not specific to any geographic area.
1 As cited in Metro 2001.
2 As cited in Collinge 1996
3 As cited in Hartley and Hunter 1998
4 As cited in Meyer and Miller 2002
5 As cited in Robbins et al. 1989
6 As cited in Lidicker 1999
7 As cited in Weaver et al. 1996
8 As cited in Laurance and Yensen 1991
9 As cited in Brosofske et al. 1997

TAXA/SUBJECT EDGE INFLUENCE FINDING STATE CITATION

180 m Avian densities were altered up to 180 m away from
homes on the perimeter of ex-urban developments.

CO Odell and Knight 2001

200–500 m The abundance of interior habitat bird species was
reduced within 200 to 500 m of an edge.

CA Bolger et al. 1997b1

> 300 m Nest parasitism by brown-headed cowbirds
decreased with distance away from forest edge but
extended > 300 m into the forest.

— Brittingham and Temple 19835

511 m, 687 m Most Cooper hawk nests occurred 511 m from paved
roads and 687 m from human habitation.

Northeast Bosakowski et al. 1992

600 m Effect of increased predation extends 600 m into
habitat.

— Wilcove et al. 19861

Mammals

> 45 m The influence of a clearcut on small mammals
(California red-backed vole and deer mouse) extends
at least 45 m into the forest from its edge.

— Mills 19966

81.92 m Maximum flushing distance of mule deer in response
to pedestrians and dogs was 81.92 meters.

CO Miller et al. 2001

100–900 m Human traffic along open roads displaces most griz-
zly bears from 100–900 meters.

— Mattson et al. 19877

McLellan and  Shackleton 19887

Aune and Kasworm 19897

Kasworm and Manley 19907

Mace et al. 19967

Plants
65 m Populations in forest remnants within 65 m of forest

clear-cut edges have almost no recruitment of young
plants.

OR Jules 1998

General
5000 m In different habitats and for different taxa, edge

effects may penetrate up to 5 km.
— Janzen, 19868
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Recommended minimum riparian and wetland buffer widths (in meters) to maintain water quality and wildlife functions with-
in ecoregions of the United States, as found within the scientific literature (as of December 2001).

APPENDIX E. RIPARIAN BUFFER WIDTH

FUNCTION TAXA/SUBJECT BUFFER WIDTH CITATION

Miscellaneous
Noise > 6 m (mature evergreen) Harris 19853

Wind damage prevention > 23 m Pollock and Kennard 19983

Noise > 32 m (heavily forested) Groffman et al. 19905

Detrital Input
Organic litterfall 1/2 SPTH FEMAT 19933

Large Woody Debris 1 SPTH FEMAT 19933

Large Woody Debris 1 SPTH Spence et al. 19963

Woody Debris 3–10 m Fischer and Fischenich 2000

Woody Debris 10–30 m Wenger 1999

Organic litterfall > 30 m Erman et al. 19773

Woody Debris > 30 m (forested watersheds) Pollock and Kennard 19983

Woody Debris > 31 m Bottom et al. 19834

Woody Debris > 46 m McDade et al. 19903

Organic litterfall > 52 m Spence et al. 19963

Woody Debris > 80 m May 20003

Temperature and micro-
climate regulation

Microclimate 3 SPTH FEMAT 19933

Shade 10–30 m Osborne and Kovacic 19933

Temperature control 10–30 m Wenger 1999

Water temperature 10–30 m Castelle et al. 1994

Shade 11–24 m Brazier and Brown 19735

Water temperature > 12 m Corbett and Lynch 19854

Water temperature 15–30 m Hewlett and Fortson 19824

Shade 23–38 m Steinblums et al. 19845

Shade > 30 m Spence et al. 19963

Shade > 30 m FEMAT 19933

Shade > 30 m May 20003

Maintenance of water tempera-
ture within 1°C of former mean

> 30 m Lynch, Corbett, and Mussalem 19851

Water temperature 30–43 m Jones et al. 19884

Air temperature, solar radiation,
wind, humidity

> 45–300 m Brosofske et al. 1997

Microclimate regulation > 100 m May 20003

Microclimate regulation 61–160 m Knutson and Naef 19973

Bank Stabilization

Bank Stabilization 1/2 SPTH FEMAT 19933

Bank Stabilization 10–20 m Fischer and Fischenich 2000
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FUNCTION TAXA/SUBJECT BUFFER WIDTH CITATION

Stream/channel stabilization 20–30 m Corbett and Lynch 19854

Stream stabilization/sediment 
control

> 38 m Cederholm 19943

Bank Stabilization > 52 m Spence et al. 19963

Flood Attenuation
Floodplain storage 20–150 m Fischer and Fischenich 2000

Sediment Removal
Sediment removal > 3m (sand), > 15 m (silt), 

> 122m (clay)
Wilson 19675

Sediment removal 5–30 m Fischer and Fischenich 2000

Sediment removal 8–46 m (depending on slope) SCS 19824

Sediment (85% removal) > 9 m (grass filter strips, 7%,
12% slopes)

Ghaffarzadeh et al. 19924

Suspended solids (84% removal) > 9 m (vegetated filter strip) Dillaha et al. 19891

Sediment removal 9–30 m Wenger 1999

Sediment removal 10–60 m Castelle et al. 1994

Sediment removal > 15 m Budd et al. 19874

Sediment removal > 15.6 m Broderson 19734

Sediment removal > 23 m Schellinger and Clausen 19924

Suspended sediment (92% removal) > 24.4 m (vegetated buffer) Young et al. 19804

Sediment removal > 25 m Desbonnet et al. 19944

Sediment removal > 30 m Erman et al. 19773

Sediment removal > 30m Moring 19823

Sediment removal > 30 m May 20003

Sediment (75% removal) 30–38 m Karr and Scholosser 19774

Sediment (75–80% removal) > 30 m Lynch, Corbett, and Mussalem 19851

Sediment (80% removal) > 61 m (grass filter strip and
vegeated buffers)

Horner and Mar 19821

Sediment (50% removal) > 88 m Gilliam 19884

Nutrient/Pollutant Removal
Nitrogen, Phosphorus, Potassium,
and Fecal Bacteria

> 4 m (grass filter strip and
forested buffers)

Doyle et al. 19971

Nitrates and Phosphates (90%
removal)

> 5 (grass filter strip) Madison et al. 19921

Nutrient removal 5–30 m Fischer and Fischenich 2000

Nitrates (almost complete removal) > 7 m Lowrance 19921

Removal of Phosphorus (79%) and
Nitrogen (73%)

> 9 m (vegetated filter strip) Dillaha et al. 19891

Nitrogen and Phosphorus > 10 m Corley et al 19991

Nutrient and Metal > 10 m Petersen et al. 19924

Nutrient removal 10–-90 m Castelle et al. 1994

Nitrate Concentrations 15–30 m Wenger 1999
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FUNCTION TAXA/SUBJECT BUFFER WIDTH CITATION

Nutrient and metal > 15 m Castelle et al. 19924

Phosphorus > 15 m 
(hardwood buffer)

Woodard and Rock 19951

Nutrient and metal > 16 m Jacobs and Gilliam 19854

Estradiol (98% decrease) > 18 m 
(grass filter strip)

Nichols et al. 19981

Nitrogen and Phosphorus (80 and 89% removal,
respectively)

> 19 m (riparian for-
est buffer)

Shisler, Jordan, and Wargo 19871

Nitrates (up to 100%) 20–30 m Fennessy and Cronk 19973

Fecal coliform reduction 23–92 m SCS 19825

Pollutant removal > 30 m May 20003

Fecal coliform reduction > 30 m Grismer 19815

Nutrient reduction to acceptable levals > 30 m Lynch, Corbett, and Mussalem
19851

Nutrient and metal removal 30–43 m Jones et al. 19885

Nutrient and metal removal > 36 m Young et al. 19804

Wildlife and Plant Species

General wildlife 3–183 m FEMAT 19933

General wildlife habitat > 10 m Petersen et al. 19925

General species diversity 10–100 m Castelle et al. 1994

General bird habitat > 15 m Milligan 19855

Fish (Cutthroat trout, rainbow trout, and steelhead) 15–61 m Knutson and Naef 19973

Birds > 15–200 m Stauffer and Best 1980

Aquatic wildlife habitat 20–150 m Fischer and Fischenich 2000

General wildlife habitat > 23 m Mudd 19755

General wildlife habitat > 27 m WDOE 19815

Invertebrates (aquatic insects) > 30 m Erman et al. 19773

Invertebrates (macroinvertebrate diversity) > 30 m Gregory et al. 19873

Fish (cutthroat trout) > 30 m Hickman and Raleigh 19823

Invertebrates (benthic communities) > 30 m Newbold et al. 19805

Amphibians (frogs and salamanders) > 30 m (riparian 
forest buffer)

NRCS 19953

Fish (brook trout) > 30 m Raleigh 19825

Fish (rainbow trout) > 30 m Raleigh et al. 19843

Fish (chinook salmon) > 30 m Raleigh et al. 19865

Invertebrates (benthic communities) > 30 m Roby et al. 19775

Amphibians, Reptiles, Vertebrates > 30 m (riparian 
forest buffer)

Rudolph and Dickson 19901

Fish (salmonid egg development) > 30 m Spackman and Hughes 19951

Plants (vascular plant diversity) > 30 m Spackman and Hughes 19951 

Fish (fish diversity and densities) > 30 m Stewart et al. 2000

Mammals (beavers) 30–100 m Jenkins 19809

General wildlife habitat > 32 m Groffman et al. 19905

Birds (Willow flycatcher nesting) > 37.5 m Knutson and Naef 19973
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FUNCTION TAXA/SUBJECT BUFFER WIDTH CITATION

Birds (diversity and assemblages) > 40 m Hagar 1999

Birds (assemblages and persistence) > 45 m Pearson and Manuwal 2001

Mammal (gray squirrel) > 50 m Dickson 19891

Birds (neotropical migrants, interior
species)

> 50 m Tassone 19813

Birds (raptors) 50–1600 m Richardson and Miller 19977

Fish (trout, salmon) > 61 m Castelle et al. 19923

Mammals (deer) > 61 m NRCS 19953

General wildlife > 61 m Zeigler 19885

Mammals (small) 67–93 m Jones et al. 19885

Reptiles (gravid mud turtles, Florida 
cooters, slider turtles)

> 73 m (90% protection) Burke and Gibbons 1995

Birds 75–200 m Jones et al. 19883

Mammal (beaver) > 91 m NRCS 19953

Mammals (large) > 100 m Jones et al. 19885

Birds (neotropical migrants) > 100 m Fischer 2000

Wildlife habitat > 100 m Fischer, Martin, and Fischenich 2000;
and Fischer and Fischenich 2000

Birds (yellow-billed cuckoo breeding habitat) > 100 m Gaines 19742

Birds (neotropical migrant diversity and 
functional assemblages)

> 100 m Hodges and Krementz 1996

Birds (forest bird nesting habitat) > 100 m Keller et al. 1993

Reptiles (Western pond turtle nesting 
habitat)

> 100 m (stream buffer) Knutson and Naef 19973

Aquatic wildlife > 100 m May 20003

Birds (red-shouldered hawk and forest bird
breeding habitat)

> 100 m Mitchell 19962

Birds (pileated woodpecker nesting habitat) > 100 m Small 19823

Birds (neotropical migrant abundance) > 100 m Triquet, McPeek, and McComb 19902

Terrestrial riparian wildlife communities 100–300 m (300 m for forest
interior species)

Wenger 1999

Reptiles (spotted turtles nesting habitat) 120 m (wetland buffer) Joyal et al. 2001

Reptiles (turtles) > 135 m (wetland buffer) Buhlmann 19981

Birds (Pileated woodpecker) > 137 m Castelle et al. 19923

Birds (species diversity) > 150 m Spackman and Hughes 19952

Birds (reduce edge-related nest predation) > 150 m Vander Haegen and DeGraaf 1996

Amphibians (salamanders) > 165 m Semlitsch 1998

Birds (Bald eagle, nesting ducks, herons,
sandhill cranes)

> 183 m Knutson and Naef 19973

Mammals (fawning of mule deer) > 183 m Knutson and Naef 19973
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SPTH, or site potential tree height, is used as a standard measurement to allow for multiple riparian functions. SPTH is measured in various ways. FEMAT (1993) defines SPTH the height of a site
potential tree as the average maximum height of the tallest dominant trees of 200 years or more of age for a given site class (For further discussion, refer to Metro 2001).
1 As cited in Fischer and Fischenich 2000.
2 As cited in Fischer 2000.
3 As cited in Metro 2001.
4 As cited in Furfey et al. 1997
5 As cited in Johnson and Ryba 1992
6 As cited in Burke and Gibbons 1995
7 As cited in Fischer, Martin, and Fischenich 2000
8 As cited in Hagar 1999
9 As cited in Allen 1983

FUNCTION TAXA/SUBJECT BUFFER WIDTH CITATION

Plants (minimize non-native 
vegetation)

> 198 m Hennings 20013

Birds (Rufous-sided towhee) > 200 m Knutson and Naef 19973

Reptiles (Blanding's turtles 
nesting habitat

> 410 m 
(wetland buffer)

Joyal et al. 2001

Reptiles (False map turtles, slider 
turtles, lotic turtles dispersal)

> 449 m Bodie and Semlitsch 2000

Birds (complete assemblages) > 500 m Kilgo et al. 19981

General Protection 
of Aquatic Systems

Multiple functions 1–90 m Todd 2000

Multiple functions > 10 m Fischer and Fischenich 2000

Multiple functions > 15 m Fischer, Martin, and Fischenich
2000

Multiple functions 30 m Furfey et al. 1997

Sediment/contaminant control, 
general water quality maintenance

30.5 m (+0.61 m per 1%
slope)

Wenger 1999

Wetland and river integrity > 335 m Schaefer et al. 19916
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