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1. Background 
The Scientific and Technical Advisory Panel (STAP) of the Global Environment Facility (GEF) is the 
advisory body to the GEF on science and technology. It is mandated to provide strategic scientific and 
technical advice on GEF policies, thematic areas of work, projects, and programs and to bring issues that 
affect global environmental change and sustainability to the attention of the GEF. In accordance with 
this mandate, STAP provides advice to the GEF on how best to address existing and emerging pressures 
and drivers of environmental degradation. The advice in this report is focused on “novel entities,” which 
are broadly defined as “things created and introduced into the environment by human beings that could 
have disruptive effects on the earth system”. They may include synthetic organic pollutants, radioactive 
materials, genetically modified organisms, nanomaterials, and/or micro-plastics1.  
 
The report presents the results of a process developed to systematically identify novel entities that are 
relevant to the GEF and then advise the GEF on how it might respond to the challenges and 
opportunities that they present. The process involved the identification of a broad range of novel 
entities and then narrowing that list down to a group of those most pertinent to the work of the GEF 
based on the following criteria:  

• Novelty – newness of the entity or new knowledge about the entity. 
• Impact – this could be related to scale, timing, scope, and complexity of their impact. 
• Relevance to the GEF: 
o The interaction between the identified entity and the GEF’s work areas2. 
o The extent to which the entity could negatively or positively affect the ability of the GEF to 

achieve its objectives, both in the near- and long-term. 
 
A broad definition of “novel entities” was adopted to include products (the entities), as well as the 
processes or applications that create the products. It is important to think of processes not necessarily 
as hardware, but as a body of knowledge about the design of certain technologies.  These bodies of 
knowledge, which could include, for instance, fields as wide as chemical or biological engineering, 
provide the underpinnings for the design and production of a wide variety of novel entities that could be 
of relevance to the GEF.3  In the case of potentially beneficial technologies, a focus on the process space 
offers greater opportunity for transformative change by facilitating scaling and multi-sectoral impacts 
(Figure 1), which are part of the objectives highlighted in the most recent GEF Strategic Plan4.  A process 
focus also provides the GEF opportunities to impact technological development before the “lock-in 
effect” occurs —the tendency to resist change because upgrading or adopting new technologies or 
processes appears prohibitively burdensome. The lock-in effect may limit or preclude technological 
access in the developing world,5 so it will be important to explore strategies (such as the support of 
open source approaches) to minimize the impact of lock-in and support wider access to technologies 
relevant to the needs of the developing world...  Process innovation is also critical to one of the key 
priorities of the GEF: to “change the production of goods and services in a manner that reduces or 
eliminates impacts to the environment6.” Focusing on processes provides an opportunity for the GEF to 
shift its focus from end-of-the-pipe solutions for environmental problems to actions that proactively 
prevent or mitigate environmental problems before they ocurr.       
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Figure 1. GEF impact space and process innovation. 

 

2. Novel Entity Identification Process 
The novel entities presented in this report were identified through a four-step process that involved 
horizon scanning, timing and impact analysis, an assessment of relevance to GEF programmatic areas, 
and translation of findings  into strategic posture and possible actions (Figure 2).  
 

 
 

Figure 2. Novel entity identification and prioritization process. 
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Horizon Scanning: Historical studies have found that delays in policy or regulatory action in the face of 
rapid technological change are often due to a lack of effective “early warning” and an inability to search 
out and identify blind spots--e.g., a lack of situational awareness.7  Horizon scanning systems, in theory, 
address both of these deficiencies. Research has also shown that decision-makers are more likely to use 
information generated from horizon scanning if they are involved in the design and implementation of 
the overall scanning system, which requires the integration of GEF staff and their viewpoints in the 
process.8  The horizon scanning phase of this project used a number of approaches, including a review of 
relevant literature9, interviews with experts within and outside the GEF10, and a two-round Delphi 
survey11. Appendix A provides a summary of the Delphi survey demographics and results, and Appendix 
B provides a list of interviewed experts. 
 
Timing and Impact Analysis: The horizon scanning process was structured to provide information on 
both potential impact of novel entities and timing of said impact, producing a cluster of entities that 
would be relevant to the GEF’s upcoming four-year planning cycle and another set of entities that could 
inform future planning efforts. Novel entities identified during the process were sorted into two 
temporal categories—the next 0-5 years and the next 5-15 years--depending on the anticipation of 
shorter or longer-term impacts and the consideration of development trajectories.  
 
In the context of emerging, potentially beneficial technologies, the process of sorting into temporal 
categories reflects largely technological feasibility, rather than implementation feasibility, which may be 
context- and country-specific and dependent on the existence of appropriate policy frameworks. 
Looking out more than five years is an uncertain exercise, but it still has value given that research 
illustrates that “one of the most frequently made mistakes [in strategic planning] is shortening the time 
horizon below five years.”12  A longer time horizon is not unusual in science and technology planning, 
given long innovation cycles, challenges inherent in scaling up new technologies, and time required for 
market penetration and diffusion.  It is important to remember that many future technology trends are 
likely to be driven by idea- and capital-intensive industries like software and biotechnology, which tend 
to adhere to long-range corporate strategies. One reflection of these strategies is the tendency of these 
industries to invest in research and development even during times of economic unrest and 
uncertainty.13   
 
The GEF will require time to integrate strategies related to novel entities into global, multilateral policy 
processes and frameworks. Timing matters from a policy standpoint since the rate of change in many 
technological sectors far exceeds that of the regulatory and budgeting processes affecting them.14  It is 
important, therefore, that the GEF focus on those technology trends which might come to fruition the 
earliest and have the most impact on its programs and mission.  These trends are probably making 
themselves felt already and may be moving into the marketplace15.  
 
As an initial sorting strategy, we identified 3-4 novel technologies in each of two timeframes--0-5 years 
and 5-15 years--based on an assessment of timing and impact from the Delphi survey and other inputs 
from experts (Figure 3).  In some cases, there were overlaps between entities, such as gene editing and 
gene drives, which allowed us to cluster choices. 
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Assessment of Relevance to the GEF: The previous GEF strategy (GEF 2020) reflected the desire for 
more cross-programmatic impact than currently exists. This exercise sought to identify novel entities 
that cut across multiple areas of interest and that would be relevant to the GEF’s integrated goals in 
work areas including food security, sustainable cities, and fisheries. There is a need to also look at 
relevance to broader frameworks relevant to the GEF, such as the Sustainable Development Goals. An 
assessment of this relevance was used to further narrow down the long list of identified entities. Figure 
4 shows an assessment of the relevance of identified entities to a selection of GEF work areas.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 4. Relevance of identified entities to GEF focal areas 
 

Figure 3. Assessment of novel entities by potential impact and timing 
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Strategic Posture: The manner in which the GEF thinks about novel entities and technological systems 
will be crucial to its ability to shape outcomes in the science and technology space.  This is one of the 
most important questions the GEF must answer over the next five years and beyond: adapt to 
technological change or shape it?  The GEF will have to consider uncertainties associated with the novel 
entities as these could impact planning processes and organisational strategies. As some researchers 
have noted, “underestimating uncertainty can lead to strategies that neither defend against the threats 
nor take advantage of the opportunities.”16 
 
For this project, we drew upon the three-horizon approach17 developed by the consultancy McKinsey to 
help organizations prioritize strategic actions in the future.  We modified the approach by collapsing the 
taxonomy into two time horizons that map into the GEF planning cycle and used the framework as a way 
to aid the GEF in translating insights on novel entities into strategies and potential actions.  This exercise 
strove to identify which emerging trends could have a major impact in the short term (0 – 5 years)  and 
the longer-term time (5 - 15 years), while also considering the sequencing of impacts18 and linking 
trends to strategies and actions. We employed the three-horizon approach as a framework for analyzing 
the results of the horizon scanning exercise. We wove this framework into our workshop, attended by 
experts from within and outside the GEF. The impact/strategy matrix (Figure 5) is designed to help 
decision-makers at the GEF translate trends with differing levels of impact into three possible 
organisational postures and strategies:19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Focus”: The emergence of a game-changing novel entity requires the GEF to focus resources--human 
and financial--on opportunities to exploit technological changes while mitigating risks.  In this area, a 
possible role for the GEF could be to help direct the course of the technology to ensure that it does not 
result in negative environmental impacts. Alternatively, the GEF could help scale up or improve the 
accessibility and affordability of a novel application, therefore accelerating benefits for the environment 
and communities affected by the technologies. 
 

Figure 5. Potential impact and response strategy 
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“Ante up” represents a strategic posture that allows the GEF to “reserve the right to play” or hedge 
against uncertainties and potentially constraining changes. This posture may include taking certain 
actions now so that the GEF remains able to either exploit a beneficial opportunity or prevent negative 
impacts as they appear, as well as to quickly recover if an assumption fails.  Implementing an “ante up” 
strategy requires maintaining flexibility and building a portfolio of actions.  Strategies could include 
making a number of small-scale investments, launching pilot projects, or running other experiments, as 
well as exploring strategies that can take the pilots to scale under a variety of external constraints. Key 
to this approach are options that allow the GEF to change course quickly, if needed. 
 
“Tracking” strategies are designed to identify “signposts” — indicators of changing opportunity or 
vulnerability.  Maintaining this posture requires monitoring early signals of change that could include 
environmental indicators of decline or degradation, numbers of new scientific publications, media 
convergence around an issue, or public and private sector investment flow.  This activity could be done 
internally within the GEF (for example, by the STAP), by external contractors, or it could be done by 
exploiting other open source intelligence sources.  Tracking serves the critical function of making sense 
of novel events, reducing uncertainties, and clarifying areas where the GEF should ramp up investment 
and engage or continue to monitor for further possible changes.  It is always worth going back to check 
whether outcomes align with expectations, predictions, or scenarios.20 
 

3. Novel Entities with Strategic Implications for the GEF 
This section provides brief descriptions of the resulting novel entities from the process described in 
Section 2. It includes background information on the novel entities, enumerating their potential impacts 
and relevance to the GEF, as well as some suggestions for how the GEF could respond to them. Figure 6 
shows the novel entities and highlights their importance, relevant time horizon, and suggested strategic 
posture. The novel entities presented do not represent all those that appeared in the background 
exercise (see Appendix A for the full list), but reflect those that fit the defined criteria in Section 1. They 
do not necessarily represent a definitive list of novel entities that should interest the GEF.  
 

  
 

Figure 6. Novelty entities with strategic importance to the GEF 
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3.1. Uptake of technology-critical elements into the environment – FOCUS 
 
Impacts : Biodiversity, Climate Change, Chemicals & Waste, International Waters, Land, Forests 

 
Overview:  
Many emerging technologies—particularly sustainable technologies and those that help mitigate climate 
change—rely on a group of elements that we term “technology-critical elements” (TCEs).This group 
includes most rare-earth elements (REEs), a group of 17 elements including the lanthanides, scandium, 
and yttrium. It also includes the Platinum group metals and Ga, Ge, In, Te, Nb, Ta, Tl. The use of TCEs in 
emerging and green technologies is resulting in their release into the environment . TCEs are important 
for many high-tech consumer products and emerging technologies, including those related to renewable 
energy and energy efficiency. They are required for production in the quickly-growing market of green 
technologies, including hybrid vehicles, solar cells, and wind turbines. TCEs are also critical to 
technologies relevant to defence, the aerospace industry, and medicine, as well as personal electronics, 
like cell phones, computer hard drives, and television monitors, and phosphate fertilisers used in 
agriculture.  
 
The extraction and processing of TCEs, especially rare earth elements, has increased significantly in the 
past four decades (Figure 7), with China dominating21. Demand is growing at a rate of 15% annually 
driven largely by production of wind turbines and electric vehicles.22   
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Global production (filled area) and consumption (lines) of rare-earth oxides and future 
projection Source: Huang et al., 201623  

 
TCEs can escape into the environment in a variety of ways. The mining of TCEs may disperse dust into 
the air, while leaving overburden and waste rock piles to sit may allow them to leach into surrounding 
waters. Furthermore, once ores are extracted, they require refining so that individual elements may be 
isolated, further providing opportunity for TCEs to enter the air, water, or land. The refining process also 
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requires the use of blends of chemicals. This results in the generation of solid waste, including 
radioactive materials24. More insidious than the processes of extracting and refining these elements, 
however, may be the eventual disposal of products containing TCEs. Because these elements are closely 
embedded with other product components, their separation for recycling is difficult. Hence, they tend to 
flow linearly through the global economy, ending up in landfills, with less than 1 percent being recycled 
or reclaimed25.  
 
Potential Impacts: As communities around the globe increase their consumption of and reliance upon a 
wide variety of technologies containing TCEs, a greater proportion of these elements is expected to find 
its way into the environment. Increased use of TCEs in an expanding range of end products is resulting in 
a change in how they cycle through the environment26, and environmental concentrations of some of 
these elements have already increased.27. The precise impacts of a higher concentration of TCEs in the 
environment remain to be seen, though there is evidence to suggest that this heightened concentration 
could have a mix of both adverse and beneficial effects on human and ecological health.28  
 
Some studies29 of the impacts of rare earth elements (REEs)—a subset of TCEs--on plants indicate that 
these elements might augment plants’ resilience to water stress by increasing production of an amino 
acid that facilitates hydration. The presence of REEs in the environment may also aid photosynthesis, 
seed germination, and plant growth. Other studies, however, indicate that REEs could be antagonistic to 
plant mineral nutrition and may increase de-structuring of plant cell organelles. 
 
Studies have also highlighted the bioaccumulation of REEs in marine organisms, animals and humans30. 
Decreased function of the renal system, heart, liver, blood, and central nervous system are among other 
health defects due to exposure to REEs31. Despite these indications, insufficient evidence exists to 
determine safe levels of REE exposure for humans and other animals.  
 
Relevance to the GEF: Many TCE products, such as electric cars, wind turbines, and solar cells, 
contribute to climate change mitigation. However, the mining and processing of TCEs are sources of 
greenhouse gas emissions32, and this mix of benefits and drawbacks needs to be considered.  
 
The mining and processing of TCEs, as well as the disposal of TCE products, could negatively impact the 
GEF’s work in the work areas of biodiversity, land, forest, international water, and food security. 
Significant land, surface and groundwater contamination from mining and processing TCEs, including 
chemical and radioactive contamination, have been reported33. Most REEs are extracted using open-pit 
mining, which results in the disruption of thriving ecosystems and biodiversity. An estimated 300 square 
meters of vegetation and topsoil are removed for every ton of rare earth oxide extracted, with 1,000 
tons of contaminated wastewater generated and 2,000 tons of tailings discarded34. Mining and 
processing TCEs also result in the generation of various harmful and potentially toxic chemicals, which 
could affect the GEF’s goal of helping to eliminate or reduce harmful chemicals and waste globally35. 
Furthermore, the limited cases in which REEs have been recycled have been linked to the emission of 
pollutants including dioxins – a Stockholm Convention Persistent Organic Pollutant36.  
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There are indications that African countries offer significant potential for future TCE production37 
making this an important subject for the GEF. For example, experts have indicated that going forward 
with a planned rare-earth mine in Madagascar would result in loss of surrounding rainforest, including a 
protected area that serves as habitat for endangered lemurs and other unique wildlife38. 
 
How can the GEF respond? Given that supporting the sound management of chemicals and waste is one 
of the primary objectives of the GEF’s work, staying abreast of changes in the environmental 
concentration of TCEs fits squarely into its goals. Despite the importance of these materials in the global 
economy, there are no studies providing a comprehensive material and energy analysis of the 
production of rare-earth metals39. The GEF could play some roles in the near term (1-5 years) by: 
• Support policies and actions that promote the sustainable extraction of TCEs, including through 

developing alternative or substitute technologies that reduce the environmental damage from 
mining, refining and recycling TCEs, or that lessen overall dependency on TCEs. These technologies 
could include nanotechnology40. 

• Facilitate the improved design of TCE products so that they more effectively use the elements. 
There should also be emphasis placed on improving the process of recycling component TCEs. One 
piece of this would be promoting a circular economy and life-cycle assessment. Studies suggest 
that recycling REEs has less environmental impact than primary production41.  

• Support efforts to quantify the demand for, material and energy needs of, and environmental 
implications of emerging applications that could increase global dependence on and use of rare-
earth, such as magnetic refrigerators or next-generation LED lighting.42 

• Help to raise awareness of the possible environmental and health impacts of continued 
unsustainable production and consumption of TCEs. 

• Collaborate with and support partnerships aimed at ensuring sustainable TCE production and 
consumption, including public-private cooperation.  

 

 
3.2. Next-Generation Nanotechnology – TRACK  
 
Impacts: Climate Change, Chemicals & Waste, International Waters, Food Security 
 
Overview: Nanotechnology generally refers to materials and systems with dimensions of less than 100 
nanometers (for comparison, a human hair is 80,000 to 100,000 nanometers wide and a strand of DNA is 2.5 
nanometers in diameter). It is an enabling technology with a wide variety of applications,  including healthcare, 
electronics, agriculture, aerospace, energy production and storage, water treatment, food processing and 
consumer products.43  Although less institutionalized in developing countries, many nanotechnology applications 
may be relevant to their sustainable development, including for improving energy availability, enhancing 
agricultural productivity, and remediating air and water pollution44.  
 
There is a continuous transition in the development of nanostructures and nanosystems and their applications. 
Figure 8 shows approximately the present transition from passive to active nanostructures visible in existing 
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research 45 . The next generation of nanotechnology, including molecular nanosystems and integrated 
nanosystems, will allow fundamentally new functions and emergence of advanced applications of 
nanotechnology46.  It is, therefore, important to think beyond the implications of existing passive nano-scale 
particles and their applications and to understand more generally where societies are on a longer-term 
technological trajectory, how these positions differ from country to country, and how countries can harness the 
opportunities from nanotechnology for global good.  
 
Though nanotechnology presents many positive opportunities, it also presents potential negative environmental 
impacts.  Little is known of the long-term effects of these materials on the environment and human health, and 
there are calls to apply the precautionary principle to pursuing related technologies47. It  will be important to close 
the knowledge gap on the unknown long-term effects of nanomaterials on human health and the environment 
and how to ensure proper governance regarding associated risks48.    
 

 
Figure 8. Development trajectory for nanotechnologies. The graphic provides some rough guideposts for tracking 
progress and shows approximately the present transition from passive to active nanostructures visible in existing 
research and some emerging commercial products.  (Adapted from the US National Nanotechnology Initiative, see 
reference 55) 
 
Potential Impacts: The market for nanotechnology is expected to grow by 18.1 percent globally to reach 
approximately 174 billion dollars by 202549.  This will produce positive impacts in diverse fields, including 
agriculture, electronics, energy, healthcare, water management, and mitigation of contaminated lands. 
The transition to next-generation nanotechnology is expected to  further expand applications of 
nanotechnology. For example, researchers recently created three-dimensional nanostructures with 
10,000 components that self-assembled with potential application in structural biology, biophysics, 
synthetic biology and photonics50.  However, as more nanoproducts are made available, it is likely that 
they will leak into the environment during their lifecycle51. Studies have suggested that active nanoscale 
structures and nanosystems could negatively affect human health, the environment, as well as aspects 
of social lifestyle, human identity and cultural values52. Nanomaterials can also affect plant growth, gene 
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expression and the structure of soil microbial communities53.  They could also be a threat to aquatic 
organisms and other biodiversity54. 
 
An important question is whether risks associated with nanotechnology will decrease or increase as our 
ability to design and engineer specific functions into materials improves and these materials become 
“active” and can respond to their external environments.  What risks and benefits are unleashed by 
materials that can self-assemble at nanoscales, enabling manufacturing systems capable of building, 
with molecular precision, complex systems with many components?55 Parallel to these issues is the 
question of how to deal with legacy risks from older products incorporating first generation, so-called 
“dumb” passive nanoparticles, including fabrics, cosmetics, coatings, etc.  
 
During interviews to support this effort Professor Matthew Hull, of Virginia Polytechnic Institute, spoke 
to the potential consequences of expanded use of nanotechnology in everyday life:56  Nano-engineering 
will open avenues for the development of polymer nanocomposite materials that are lighter and 
stronger. He posited that we are likely to see these materials surface with increasing frequency in 
wearables and electronic devices—products humans are intimately connected with, like clothing items 
and cell phones. Hull noted that as nanotechnology is integrated into consumer goods, the interface 
between humans and nanomaterials becomes closer. As such, any negative impacts that emerge from 
nano-engineered products may have stronger impacts on human health and wellbeing. He, therefore, 
emphasised the importance of building the infrastructure to properly monitor potential impacts.57 
 
Relevance to GEF: Several nanoproducts have direct applications and can contribute to achieving global 
environmental benefits in GEF focal areas. For example, nanomaterials could be used for pest control, for precision 
delivery of agrochemicals and genetic materials, and for detection of plant diseases.58 These applications could 
help increase agricultural productivity and significantly reduce the use of harmful chemicals in agriculture, like 
pesticides that are regulated by chemical conventions.  Another promising application relevant to the GEF is the 
design of a biodegradable nanomaterial from wood, which has better heat-insulating properties than existing 
insulators, with potential for use in the design of energy-efficient buildings with climate benefits59. Another 
possible application would be to use nanoscale technology for the desalination of water with little-required energy 
input; this could help alleviate water scarcity60.  Nanotechnology could also yield climate benefits through, for 
example, lightweight nanocomposites that can reduce the weight, and consequently the fuel consumption, of 
cars; nanocatalysts to improve vehicle fuel-use efficiency; and nanoCO2 harvesters that produce methanol from 
atmospheric CO2

61. These and other applications of nanoscale innovations offer myriad potential solutions to 
some of the world’s most pressing environmental challenges, but they also require significant study and 
monitoring.  
 
How can the GEF respond? While nanotechnology offers many potential environmental benefits, the 
unknown negative impacts cannot be ignored. It is suggested that the GEF stay abreast of ongoing 
developments in the field and watch for potential opportunities or threats to people and the 
environment.  In doing this, the GEF could consider the following actions in the near term: 
• Conduct a detailed assessment of trends in nanotechnology design, production, and use and study 

how ongoing developments in the field could affect the goals and objectives of the GEF.  
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• Monitor and support current efforts aimed at understanding the transport, fate, and behaviour of 
nanomaterials in the environment, including potential threats to environmental and human 
health.  

• Monitor and support effort towards sustainable nanomanufacturing and green nanotechnology. 
These are emerging nanotechnology fields that aim to improve the sustainability of 
nanomanufacturing by minimising the use of toxic chemicals and lessening the amount of energy 
required to produce nanomaterials62.   

 
 

3.3. Blockchain – ANTE UP 
 
Impacts : Biodiversity, Climate Change, Chemicals & Waste, Sustainable Cities, Fisheries 
 
Overview: A blockchain is a digital ledger that decentralises data and eliminates intermediaries typically 
required to validate transactions. It uses a distributed database to store information securely, 
transparently, and efficiently and can, therefore, improve processes that require secure sending, storing, 
accessing, or verification of information63. In blockchains, information is parcelled into blocks and 
encrypted, with a new set of blocks added to form an expanding chain. It differs from traditional 
databases or ledgers because the chain of blocks is not stored centrally but copied and distributed in a 
computer network , making it incorruptible and ensuring that everyone has a copy when new blocks are 
added64.   
 
Blockchain was created in 2009 by an individual under the alias Satoshi Nakamoto. The source code was 
originally designed to support the virtual currency Bitcoin65,66. Nearly ten years later, the average 
investment per blockchain project in 2017 was $1 million, and the global market is expected to be $20 
billion by 202467. Companies like IBM have dedicated nearly $200 million in funding and over 1,000 
employees to work involving blockchain, highlighting the market potential it has within the tech 
industry68.  
 
Emerging markets in blockchain exploration include digital contracting, management of healthcare 
records and personal identification information, supply chain management, and banking.  Some funding 
organisations are exploring “blockchain for development” applications, which include applications for 
micro-financing, micro power grids, traceability of resources, land tenure, and tracking of genetic 
resources. Although the public reception has thus far been positive, there remain those who are 
sceptical of the technology’s resilience to hacking and those who are concerned about the energy 
consumption cryptocurrencies like Bitcoin require.  
 
Potential Impacts: Recent reports and analyses have highlighted the energy impacts of blockchain as the 
underlying technology for Bitcoin, and the negative consequence with respect to climate change69. The 
Digiconomist70 estimates the current annual electricity consumption of Bitcoin transactions at 65.63 
(TWh) with electricity consumed per transaction estimated at 854 (KWh) as of May 2018. They estimate 
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that current energy consumption of Bitcoin could power more than 6 million households in the United 
States. Another analysis indicated that the annual energy consumption of Bitcoin exceeds that of 159 
countries combined. Though estimates of blockchain energy consumption vary, there is a consensus that 
the technology can take a toll on the environment. Additionally, cryptocurrency mining is rapidly 
expanding in countries, for example China, where energy-intensive server farms are being used, often 
connected to coal-fired electricity systems71. The boom in Bitcoin mining has been linked to the 
reopening of a coal-fired power plant in Australia72.  Venezuela is exploring Bitcoin mining in response to 
its economic crisis73 and activities are emerging in Puerto Rico, where 450,000 people remain without 
electricity74. However, there have been efforts to reduce the energy consumption of Bitcoin75. 
 
Blockchain technology can, however, help address environmental challenges and improve 
environmental practices. The technology could be used to provide consumers with better information 
on sources of materials and how products have moved through supply chains.  This would allow for 
more consumer awareness of the environmental implications of product choices and improve industry 
transparency.76 For example, IBM, JD.com, Walmart and Tsinghua University National Engineering 
Laboratory for E-Commerce Technologies recently implemented a project to track the origin, safety and 
authenticity of food, using blockchain technology to provide real-time traceability throughout the supply 
chain. The project will promote accountability and give suppliers, regulators and consumers greater 
insight and transparency into the safety and environmental impact of food commodities77. 
 
Another potential use of blockchain is to track carbon emissions from sources like power plants, 
allowing public agencies and consumers to more easily determine the amount of carbon from various 
energy producers. Blockchain could also provide information on the carbon footprint of goods or 
services, which could improve consumer decision-making and create a new way of incentivising 
sustainability. Blockchains can also be used to support micro-energy grids that create local energy 
markets78. For example, they are now being used to run small solar micro-grids in Brooklyn NY, Texas 
and Australia, providing a local solution that allows neighbours to buy and sell electricity from each 
other, either within an existing power grid or independently, without a utility serving as an 
intermediary79. 
 
Relevance to the GEF:  Within each of the GEF’s programme areas, efficient blockchain use could spur 
better analytics and knowledge management. Access to better data and real-time impact values could 
enhance the GEF’s work and improve its audit of environmental resources and other benefits from its 
investments.  
 
Blockchain may be particularly relevant to the GEF’s Chemicals and Waste programme area.  It can be 
used to track the movement of chemical products, including their makeup and how wastes are 
managed. This will contribute to achieving its goal of “ensuring that products crossing national borders 
are free of global priority substances that otherwise enter into markets and recycling chains”80.  
 
Blockchain enabled microgrids are a potential solution for energy challenges in rural developing 
countries, by creating a peer-to-peer marketplace for the production of electricity, for example, from 
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solar home systems and other local renewable energy sources, which is currently booming in sub-
Saharan Africa81.  The proliferation of such system could contribute to the GEF’s climate change 
objective of “promoting innovation and technology transfer for sustainable energy breakthroughs”82.  
 
Related to the GEF’s work on international waters, specifically the ‘blue economy’ and the need for a 
more sustainable use of marine and coastal resources, blockchain can be used as a tool for monitoring 
and tracking marine resources and preventing illegal exploitation. For example, the World Wildlife Fund 
has used blockchain to mitigate illegal fishing of tuna.83  Blockchain may also be relevant to the GEF’s 
work on illegal wildlife trade. Better tracking of poaching practices would advance the goal of reducing 
illegal trade via the enhancement of “anti-poaching tracking and intelligence operations.” 
 
Blockchain technology has also been proposed as a possible backbone for achieving smart and 
sustainable cities84 – one of the GEF’s integrated approach programmes (IAP)85.  Blockchain can improve 
urban planning, transportation, smart buildings, energy use and distribution, as well as the sharing and 
flow of resources and information within a city, by serving as a cross-cutting platform that connects the 
cities’ different services and enhances transparency and security in all processes86. For example, Ford, 
Autonomic, Qualcomm and Waze are currently building a blockchain-based smart city platform that 
could improve transportation in cities and encourage sharing, which could consequently reduce 
transportation carbon footprint87.  
 
How can the GEF respond? Though blockchain technologies diverge the furthest from the definition of 
novel entities, it is recommended that the GEF exploit their potential as an enabling platform with reach 
across its programmatic areas and internal strategy including for knowledge management. The GEF 
should not wait for blockchain technology to become well established before getting involved as it may 
miss the opportunity to help shape blockchain applications and prevent negative consequences. This 
could start with a detailed assessment of relevance to GEF focal areas to identify areas for immediate 
action.    
 
The GEF could also explore blockchain application for creating efficient microgrids that support peer-to-
peer energy transactions in small communities using renewable energy resources as discussed earlier.  
Existing experiments in the US and Australia should be studied to determine their viability in the context 
of developing countries.   
 
Within the context of the Convention on Biodiversity and the Nagoya Protocol, blockchains could play a 
critical role in tracking the provenance of genetic resources and support more effective benefit-sharing. 
Additionally, there are new efforts to use blockchains to publicly record and globally verify property 
rights and individuals’ claims, which could help low-income individuals in developing countries capture 
the value of their land.88 This type of application can be explored to determine its relevance to the GEF’s 
work on agriculture, food security, land degradation, and biodiversity.   
 
Lastly, the GEF should also review other emerging uses of blockchain technology that present possible 
opportunities, like using blockchain-based crowdfunding to supplement GEF funds for projects, 
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especially pilots. A new Ethereum blockchain-based platform called Acorn is open-access and 
commission-free (most commercial crowdfunding platforms charge 3-5 percent) and is designed 
specifically to, “create an open, global community and marketplace for crowdfunding, opening it up to 
new participants such as those living in developing countries.”89  The goal of the Acorn Collective is to 
democratise crowdfunding.90  
               

3.4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and Gene Editing – 
ANTE UP 
 
impacts: Biodiversity, Climate Change, Chemicals & Waste, Forests, Food Security 
 
Overview: Genome editing or gene editing techniques for the addition, removal, or alteration of DNA 
nucleotides go back to early discoveries in 1991 (Zinc Finger) and 2009 (TALEN)91. In 2012, Clustered 
Regularly Interspaced Short Palindromic Repeats, or CRISPR, was demonstrated and described as both  
“molecular scissors” and a “Swiss Army knife” for biological engineering.92  CRISPR is a gene editing 
technique that is precise, inexpensive, and relatively easy to learn. It is rapidly advancing in research and 
applications (Figure 9) and promises to open up new opportunities to solve problems, ranging from 
providing better control of vector-borne diseases to improving animal husbandry, and helping plants 
defend themselves against infection, drought, and other climate-change-related issues.93  
 

 
 

Figure 9. Publications with “gene editing” in the title from 2004 to 2017  

(based on a Web or Science search)  

 
Potential Impacts: Researchers at the University of California - Berkeley are using gene editing to alter 
cacao plants to help them survive if climate change warms and dries their native rainforest habitat. 94 
This work is funded by Mars, the candy company, as part of a $1 billion commitment to reducing their 
carbon footprint. Other critical cash crops, such as coffee95, are also being threatened by climate change 
and might benefit from gene editing approaches. 
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Other research is being undertaken to allow plants to produce their own nitrogen, which could 
significantly reduce the energy and environmental impacts associated with the production and use of 
nitrogen-based fertilisers.96  Three to five percent of the world's natural gas production is consumed in 
the Haber Process used to produce fertilisers, equivalent to about 1–2% of the world's annual energy 
supply97.  Models run at the International Institute for Applied Systems Analysis showed that self-
fertilisation could significantly increase maize yields in parts of Africa while reducing climate and land 
use impacts.98  Another interesting line of research focuses on improving the health of our prime 
pollinators, honey bees, by engineering bee species that obsessively clean their hives to remove sick and 
infected bee larvae99.  Jennifer Doudna, one of the inventors of CRISPR, has noted that the biggest 
impact of the technology may not be on humans, but on the food we eat. 100   
 
The appearance of CRISPR has, however, been accompanied by warnings of ethical concerns, market-
based eugenics, novel bioweapons, planetary extinction, and general admonitions about the dangers of 
unregulated genetic determinism.101  CRISP was classified as a potential weapon of mass destruction in a 
2016 annual United States worldwide threat assessment report102.  
 
There has been concern among scientists, policymakers and other stakeholders about the availability of 
an appropriate governance and regulatory framework for these technologies and how and when the 
public should be engaged103. The genetic alteration of plants without the need to transfer genes 
between species challenges many of the regulatory frameworks originally put in place decades ago to 
address transgenic modifications. Innovations like CRISPR also often bring up issues of intellectual 
property. How will these technologies be developed and disseminated to achieve benefits in the 
developing world given the large investments of private firms like Mars or Bayer?  Also, if the resources 
for genetic modifications come directly from developing countries, the benefits will need to be shared 
under the Nagoya Protocol, but the details of such sharing mechanisms still need to be developed.104 
 
Relevance to the GEF: Gene editing technologies present particularly compelling avenues for responding 
to some of the threats of global anthropogenic climate change, especially helping crops adapt to climate 
change impacts. It is also a promising technology for reducing the negative impacts of food production. 
For example, researchers are attempting to apply gene editing in the reduction of enteric fermentation 
methane emissions from ruminants105, which constitute the single largest source of agricultural 
methane emissions. Also, researchers were able to alter the gene of an algae strain resulting in a 
significant increase in biofuel production106. Scaling up this research could make the algae a significant 
source of renewable energy in the nearest future.  Success in these will contribute to the GEF’s work on 
climate change mitigation and adaptation.  
 
However, the possible negative outcomes of widespread use of gene editing also necessitate vigilance in 
monitoring and evaluating impacts. While gene editing has been suggested as a technique for saving 
endangered species or eradicating invasive species107, the widespread use of gene editing could become 
a major threat to biodiversity. For example, researchers have developed gene editing techniques that 
can be used to eliminate some insect species108. The UN Convention on Biological Diversity – one of the 
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Conventions served by the GEF, has called for the establishment of a moratorium on genetic extinction 
technologies because of the potential threat to biodiversity109. Several consumer and environmental 
groups have also raised concerns about the approval, by the US Food and Drug Administration, of 
genetically modified food, such as salmon, because of possible escape into oceans and rivers, and 
consequent endangering of wild salmon populations110.    
 
How can the GEF respond? Given the rapid advances in the applications of gene editing and the range of 
potential negative and positive impacts from gene editing innovations like CRISPR, there is an impetus 
for the GEF to proactively keep track of ongoing developments in the field and attune its programming 
and resources accordingly.  
 
It is important that the GEF stay on top of gene editing techniques that could adversely impact the 
achievement of global environmental benefits; and help promote, where possible, the ethical use of 
techniques that have been scientifically proven, and globally accepted, to contribute positively to 
meeting environmental objectives. Possible areas of focus could include applications in the area of food 
security and climate change adaptation such as the development of crops that are more resistant to 
climate change, and in climate change mitigation such as nitrogen fixation techniques in crops, and 
methane emission reduction in ruminants.  
 
In the near term, the GEF could also consider supporting capacity building among developing countries, 
especially as it relates to global and national governance and regulation of gene editing technology.   
 
 
3.5. New Engineered Bio-based Materials – ANTE UP 
 
Impacts: Biodiversity, Chemicals & Waste, International Waters, Forests , Food Security, Sustainable Cities 
 
Overview:  For many years, the discussion of bio-based materials has focused on the development and 
commercialisation of plastics and composites that can compete with petroleum-based products.  Recent 
advances in synthetic biology have, however, dramatically expanded the range of products that can be 
engineered from organic materials through the programming of metabolic processes in biological 
organisms such as yeast111.  These approaches allow a vast number of complex molecules to be created 
for both commercial and local on-demand production, while reducing both research and development 
costs and times. Going forward, advances in synthetic biology will allow engineered microorganisms to 
complement and replace plant-based production systems altogether.  Interesting recent examples 
include the use of engineered yeast to produce biofuels, vanilla and even opioids.112 However, 
significant advances are still needed in the field in order to deliver commercial-scale yields with 
sustainable benefits, which can provide viable substitutes for materials already in commerce. For 
example, the existing generation of bio-based plastics has not solved or reduced the accumulation of 
plastics in our environment and their impacts.113  More research is needed on next generation bio-based 
materials that provide long-term solutions and benefits.  
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Potential Impacts: Advances in the development of engineered bio-based materials will contribute to 
mitigating the unsustainable use of natural resources and global warming. As stated by Marc Palahi, the 
Director of the European Forest Institute, “if we want to address the urgent challenge of climate change, 
materials will have to come predominantly from fossil-free sources, basically from renewable biological 
resources.”  This implies a shift from a hydrocarbon to a carbohydrate economy, or as some observers 
had pointed out, a possible return to a time when “plants were the primary raw material in the 
production of dyes, chemicals, paints, inks, solvents, construction materials, even energy.”114    
 
Researchers are exploring the use of biological approaches to allow on-site manufacturing of 
construction materials that would replace existing bricks and cement115.   This would allow building 
materials to be made at ambient temperatures with no CO2 emissions, minimal dependency on natural 
fossil fuels, and little waste in manufacturing.  Today, cement making accounts for around five percent 
of all industrial fossil fuel emissions and, of the two billion tons of CO2 emissions created each year by 
cement production, half come from fossil fuels burned as an energy source for the kilns116. 
 
However, negative and unintended consequences need to be addressed.  For instance, concerns have been raised 
about impacts on farmers and local supply chains if natural indigenous crops and production processes are replaced 
in part, or completely, by synthesized bio-based production techniques and products.117 
 
Relevance to the GEF: Advances in engineered bio-based material could provide more sustainable 
alternatives to plant-based production system, thereby reducing their environmental impacts which cut 
across several of GEF work areas – climate change, land degradation, biodiversity, international waters, 
forestry, and chemicals and waste. Producing chemicals using engineered bio-based materials combined 
with green chemistry could help eliminate harmful, petroleum-based chemicals118. Likewise, a successful 
scale-up of biofuel production from engineered yeast could significantly reduce fossil-fuel consumption, 
thereby reducing greenhouse gas emissions. Also, biological manufacturing of construction materials 
could significantly reduce the environmental impacts of construction in cities, as well as more rural 
areas.      
 
How can the GEF respond?: There are significant opportunities for the GEF to help shape the future bio-
economy beginning with continuous and high-level engagement in on-going global dialogues such as the annual bio-
economy summits or meetings of organisations like Synbiobeta and the synthetic biology innovation network.119   
Additionally, the GEF could identify and highlight emerging applications of synthetic biology with positive 
environmental, social, and economic impacts for developing countries. Many promising technologies are in the 
scale-up and early commercialisation phases where public policy frameworks can play important roles in allowing 
solutions to reach the market. Policy harmonisation between developed countries and within the context of 
multilateral treaties, such as the Convention on Biological Diversity, the United Nations Convention to Combat 
Desertification, the United Nations Framework Convention on Climate Change and the Chemical Conventions will 
play important roles in advancing solutions with high environmental value.    



21 
 

3.6. Nano-Enabled Energy – TRACK 
 
Impacts: Climate Change, Chemicals & Waste, Sustainable Cities 

 
Overview:  If we capture only 1/1000th of the solar energy striking the Earth, we could have six times 
more energy than we consume in all forms today. One of the challenges to harnessing solar energy is 
the difficulty in efficiently capturing and converting solar energy to meet our needs. Currently, 
crystalline silicon cells, having a conversion efficiency of 12 to 20 percent over a small area, dominate 
the photovoltaic (PV) cell market, with costs dropping from $30 per watt to under 30 cents per watt 
today. Researchers and companies are exploring options to boost efficiencies, and values as high as 44 
percent have been obtained in experimental settings, such as at the U.S. National Renewable Energy Lab 
(NREL). Nano-composites can add to the electrical and thermal conductivity of PV cells, and cells created 
from carbon nanotubes can add efficiency with far less weight than conventional copper wires.  Other 
options involve increasing the use of the infrared spectrum, through nano-sized semiconductors, for 
electricity production or converting all available light to power equally, which is normally impossible 
using existing technologies120.  
 
Future solar cells based on nanoscale carbon (graphene), instead of silicon, promise to reduce costs and 
expand markets with the availability of flexible polymer cell substrates that can be integrated directly 
into building materials or painted on surfaces121.  This could significantly increase market penetration 
and public acceptance of solar energy. Another nano-enabled energy innovation of the future is the so-
called “wearable thermoelectric generator” where solar cells are integrated directly into clothing to 
harvest energy from body heat to supply electricity to devices such as cell phones, sensors, or other 
smart devices.122   
 
Efficient battery technology also constitutes a major bottleneck in expanding the use of renewables.  
Nanotechnology has already improved battery energy and power density, cyclability, and safety, 
especially for electric vehicles and portable devices.123 Many of the improvements focus on electrode 
structure and improved surface chemistry.  In the longer term, novel future batteries could include self-
assembling, 3-dimensional nanostructures.124    
 
Potential Impacts: the impacts of nanoscale science and engineering on energy production technologies 
and systems will cut across multiple areas, including solar, hydrogen, and wind energy, over the next 
couple of years125. For solar energy in particular, nano-bio hybrid cells may allow even greater 
efficiencies to be achieved that approach theoretical maximums126. Nanoscale manufacturing of PVs can 
also provide direct environmental advantages.  For instance, PVs based on colloidal quantum dots can 
be manufactured at room temperature, saving energy and avoiding environmental impacts associated 
with the high-temperature processing of silicon and other PV materials127. Also, many of the future 
applications of nano-enabled energy will involve a shift in manufacturing from high-cost and energy-
intensive photolithography to high-yield printing, which will provide environmental benefits and may 
facilitate their uptake in developing countries.128 As the late Nobel Laureate and nanotechnology 
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scientist Richard Smalley noted, “breakthroughs in nanotechnology open up the possibility of moving 
beyond our current alternatives for energy supply by introducing technologies that are more efficient, 
inexpensive, and environmentally sound”129. 
 
Relevance to the GEF: It is estimated that nearly 1.3 billion people do not have access to electricity.  
Meeting their energy needs using conventional fossil-fuel based energy sources will exacerbate climate 
change. Nano-enabled energy technologies could support a low-carbon, user-centric, local energy future 
that reduces the need for constructing large centralised networks in developing countries, with benefits 
for the GEF’s work on climate change and sustainable energy innovation and technology.  The shift to 
high-yield printing could also reduce chemical needs of production, with potential benefits for the GEF’s 
chemical and waste focal area. 
 
How can the GEF respond?: Most future breakthroughs in nano-enabled energy will come from 
countries like China, the United States, South Korea, Japan, Germany, Taiwan, and the United Kingdom, 
where research and development investments, patents, and university research levels are the 
highest.130  The GEF should, therefore, keep track of technological advances in these countries to 
identify relevance to developing countries’ energy needs. The GEF, through its investments, could also 
help facilitate quick access, penetration and acceptance of these new technologies as they become 
available. 
 
The GEF could also focus on areas beyond PVs where nanotechnology could reduce climate and 
environmental impacts, such as novel thermoelectric devices.  It is estimated that seventy percent of all 
energy loss is through heat. Generating 5-10 percent more electricity from that wasted heat could result 
in significant reductions in power demand and associated carbon emissions, as well as other 
pollutants131. Nanotechnology-based thermoelectric devices using, for instance, carbon nanotubes, can 
convert waste heat from power plants, automobiles or even cooking stoves directly into electricity at 
increasing efficiencies and scales,.132   
 
The GEF, through the STAP for example, may also help stimulate research into how nano-enabled 
energy can be developed to fit into developing countries context as well as the development and 
scaling-up of integrated systems to support individual or household needs.  Questions remain, however, 
about the demand for solar power in the developing world, even if costs drop significantly.  Some 
studies have shown that even at low prices, people tend to favour “real electricity,” i.e., central station 
grid-connected power that is viewed as reliable and available around the clock.133 The GEF, through its 
projects, could support awareness-raising efforts on the benefits of embracing renewable energy from 
decentralized sources. 
 

3.7. Cellular Agriculture – TRACK 
 
Impacts: Biodiversity, Climate Change, International Waters, Land, Forests, Food Security 
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Overview: Presently, livestock is responsible for an annual greenhouse gas emission of 7.1 Gigatonnes 
CO2, equivalent to 14.5% of total emissions134.  Additional impacts occur through land-use, water, and 
nutrient requirements for feed.  Hence, the promise of a post-animal economy has recently attracted 
the attention of funders like Google and Bill Gates; and some start-ups and labs are focused on ways to 
make edible and attractive protein substitutes for meat through cellular agriculture135. Cellular 
agriculture focuses on livestock products from cell cultures without the animal itself136. Researchers are 
also focused on creating meat substitutes from plant-based protein; engineering microbes to produce 
dairy products such as milk; and making other products like leather, fur and wood through cellular 
agriculture137. Other researches aim to develop decentralised, small-scale bioreactors for growing plant 
cells in the home or at a local level.  For instance, the Technical Research Center in Finland (VTT) has 
demonstrated a system for growing plant cells with the same active biomolecules as the plant itself in 
fermenters, with a capacity of up to 1,000 litres, as well as using in-home bioreactors.138  
 
Potential Impacts: Advocates of cellular agriculture are motivated by the belief that the technology 
could help achieve a more sustainable food production system, and significantly reduce the 
environmental impacts of food production. These include greenhouse gas emissions, freshwater-use 
footprint, water pollution, deforestation, biodiversity loss, land degradation, desertification, 
agrochemical pollution and associated health impacts139.  This is particularly important with the 
continuous rise in global demand for animal protein140. A life cycle analysis showed that producing 1000 
kg of cultured meat requires approximately 99% lower land use, 82–96% lower water use, 78–96% lower 
greenhouse gas emissions, and 7–45% lower energy use (poultry has lower energy use) compared to 
conventionally produced European livestock141.  
 
Apart from the potential environmental benefits, cellular agriculture could also have positive impacts on 
food safety, reduce antibiotic resistance, improve animal welfare, and result in products with longer 
shelf life142. It may also improve nutritional composition of food products143 and could be a solution for 
protein nutritional deficit in developing countries, which can lead to such problems as childhood growth 
stunting.     
 
However, a more recent life-cycle analysis of energy consumption in cellular agriculture raised concerns 
about its climate change mitigation benefits. The study indicated that cellular agriculture could intensify 
greenhouse gas emissions because of the increased industrial energy needed for replacing biological 
functions with chemical and mechanical equivalent144. This point is further buttressed in another study 
that shows that cultured meat has higher environmental impacts, except for its impact on land use and 
terrestrial and freshwater pollution, compared to chicken and plant-based, mycoprotein-based, and 
dairy-based meat alternatives, mostly due high energy requirements145.  Overall, current understanding 
seems to suggest that chicken and plant-based proteins have lower environmental impact than cultured 
meat but cultured meat has less impact than beef, and possibly pork146. It is, therefore, important to 
fully understand the footprint and trade-offs involved before the technology advances further.  
 
There are also issues regarding how products will be regulated, the challenge of intellectual property, 
ethical concerns, and the looming issue of public acceptance147. Moreover, there remain questions of 
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how to scale manufacturing processes to create adequate supplies, and ensure affordability and 
accessibility, especially in developing countries148. It is worth noting that the first lab-grown burger came 
at a steep price of $300,000.149 Furthermore, the probable socio-economic effects such as the impact on 
livestock and dairy farmers need to be considered150.  
 
Some have also raised concerns that growing meat in the lab would further encourage current excessive 
meat consumption in some cultures (a causative for several illnesses151 ) instead of promoting 
behavioural change and sustainable diets that provide benefits for both the environment and human 
health152.  
 
Relevance to the GEF: If successfully scaled up, cellular agriculture may significantly reduce the 
environmental footprints of current food production system. This would yield benefits for several GEF 
work areas including climate change mitigation, land degradation, international waters, chemicals and 
waste, forest, and biodiversity. However detailed analysis is still needed to understand the full impact, 
as well as possible unintended consequences.  
 
How can the GEF respond?  Given the potential for cellular agriculture to fundamentally shape our food 
systems, the GEF should consider what role it can play as the conversation moves forward. The GEF 
should keep track of technological developments, capabilities, and timing, as well as engage in the 
expanding conversation on the future of protein, and how it affects the global environment.   
 

 
3.8. Possible Surprises 
 
Over the course of the next five years, the GEF can expect to be surprised—confronted with new threats 
and risks or unusual opportunities that may fall outside of the boundaries of a strategic plan or related 
organisational attention and capacity.  The danger implicit in novelty of this type is that disruptive 
effects may not be discovered until they become a problem at a large scale and cannot be readily 
reversed or, if the effects are positive, exploited.153   We have identified three recent novel discoveries 
that present a range of possible risks and opportunities. These discoveries were identified through the 
Delphi process or interviews with researchers.  All share the characteristic that scientists were not 
necessarily looking for them when they were discovered.  
 
• Titanium Sub-Oxides: A nanoscale pollutant: In 2014, a team of scientists studying arsenic in the 

Dan River coal ash spill site in North Carolina discovered a new nanoscale version of titanium 
oxides that had never been seen before (Ti6O11). Testing found that unlike normal titanium 
dioxide, which is photoactive and damaging to zebrafish embryos in sunlit conditions, these 
particles were reactive and toxic to zebrafish in dark conditions, which has significant implications 
for humans inhaling particles into the dark depths of their lungs.  How much has been emitted 
into the earth’s atmosphere through coal combustion since the beginning of the Industrial 
Revolution? Initial calculations result in a figure of around one billion tons.  Understanding the 
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long-term toxic effects of titanium sub-oxides to humans is important and will require much more 
study into their transport and fate, mechanisms of action, and short- and long-term impacts from 
exposure.154  
 

• Pandoraviruses: In 2003, large viruses were discovered quite accidentally in Chile and Australia 
that lacked any similarity to previously described organisms suggesting that they may represent a 
fourth domain of life. DNA analysis of the viruses found a near absence of Pandoravirus-like 
sequences in existing databases (only 7% of their genes matched known viruses) and suggested 
that their ecological niche and role has not been studied by scientists.  It remains unclear what the 
implications of the discovery will be, though scientists noted that they may have to revise their 
notions of what a virus looks like and that one should expect ‘surprises’ from future study.155 
 

• New antibiotic without apparent resistance: In 2015, scientists at Northeastern University 
identified teixobactin, an antibiotic produced by previously undescribed soil microorganisms. 
Teixobactin kills pathogens by preventing peptidoglycan biosynthesis, effectively preventing the 
synthesis of cell walls. It is significant because it is without detectable resistance—a quality 
desperately sought in the current context of rapidly spreading antibiotic resistance. Bacteria will 
someday develop resistance to teixobactin, but scientists are optimistic that this may occur in 
decades, rather than years.   Of perhaps more import than the teixobactin itself is the tool used to 
isolate and identify the compound: the iChip. The iChip is an assembly of plastic plates and 
membranes containing hundreds of holes, which allows researchers to isolate antibiotic 
compounds with far greater sensitivity, potentially enabling the discovery of more compounds like 
teixobactin in the future.156 

 
It is likely that with the proper surveillance mechanisms and situational awareness, the GEF will see the 
emergence of novelty of this type. The challenge then will be how to respond. An extensive study of 88 
environmental issues by the European Environmental Agency discovered that only four early warnings 
constituted true “false positives” — US swine flu, saccharin, food irradiation, and the Southern leaf corn 
blight.157  In a majority of cases, early warnings provided by scientists and others proved correct. In 
many cases, though, risks and trade-offs continued to be studied, and actions were delayed.  Research 
has shown that addressing these types of surprises, some predictable, is often delayed or avoided in 
organisations because it would require effort in the present and because it is easier to maintain the 
status quo and avoid departing from organisational plans.158  Consequently, it makes sense for the GEF 
to create “organisational slack”—some excess capacity maintained to respond to highly novel, emerging 
issues like those highlighted above. 159   

 

4. Further Recommendations  
 
In the preceding section, we described the identified novel entities, their relevance to the GEF, and we 
provided specific recommendations on how the GEF may respond. In this section, we provide 
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supplementary and broader advice on approaches that the GEF could adopt in responding to the 
challenges and opportunities posed by the identified novel entities.  
 
Scan, Signal, and Convene: In order to stay on top of emerging trends, this type of horizon scanning 
should be encouraged and repeated on a regular basis. The GEF should also explore ways of learning 
from and leveraging other horizon scanning systems that can provide intelligence on emerging 
technology trends. For instance, in 2013 UNICEF set up a “near-future sensing team” to provide 
information on rapidly emerging issues and threats, and inform investments in innovative 
technologies160.  The global network of innovation labs and projects that are part of UN Global Pulse 
might also provide relevant data161.  Anticipatory analyses by the European Commission Joint Research 
Center and the Organization for Economic Co-operation and Development (OECD) could also be used, as 
well as private sector and NGO efforts, such as the Millennium Project’s Global Futures Intelligence 
System162.   
 
A key to future success will be the GEF’s ability to identify and understand the implications of so-called 
“weak signals163” and to send indications to the outside world regarding strategic priorities and intent164. 
Future scanning should employ both bottoms-up approaches to prioritise developing world needs and 
top-down mechanisms to identify possible technological solutions.  The GEF should act as a “convener,” 
which could be used to signal GEF priorities, update and expand on findings from foresight exercises, 
engage existing and potentially new stakeholders in collective efforts to achieve goals, and design better 
public-private partnerships to leverage funds.  For instance, if there are questions about how best to 
apply blockchain technologies to developing country challenges, the GEF, probably through the STAP, 
could convene experts around the topic “blockchains for development.” 

 
Focus on removing bottlenecks to technology adaptation.  These bottlenecks could include cost and 
financing shortfalls, public opinions affecting market penetration of new technologies, political 
resistance; lack of infrastructure; privacy concerns; natural resource constraints, research and 
development investment, education and literacy; inadequate technical capacity; and political stability. A 
recent workshop on supporting the bio-economy in Africa made the point that “these new technologies 
are relatively low-cost, but their adoption in Africa is limited by deficits in technical training, poor access 
to new research materials, inadequate laboratory facilities, and lack of strategic partnerships with other 
African and international research institutions.”165 Some of the required infrastructure could be 
technological, but limits may be imposed by the lack of a trained workforce, poor physical infrastructure, 
cultural norms, inadequate or non-existent regulations or policy that support innovation, or limited 
financing options.   The GEF may consider the use of ‘bridge’ technologies to provide interim solutions 
for bottlenecks as other solutions requiring more time and investment are developed and scaled up.  For 
instance, steam autoclaving of municipal solid waste using existing technologies could provide a means 
to divert and convert considerable amounts of waste as more advanced biologically-based systems are 
developed.166 
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Seek Early Successes and Make them Visible:  It is important to showcase early wins as a means of 
building and sustaining momentum by picking a few priorities that can be tackled in a reasonable 
amount of time with a high probability of success.  For example, the GEF cannot tackle the challenge of 
greening the rare earth metal production system, but it could pilot innovative ways to reduce waste, 
emissions, and human exposures.  Supporting early successes can use a number of strategies:  

• Disaggregate large projects with ambitious, multi-year goals into achievable pieces. 
• Make someone responsible, for instance, by creating a ‘technology and innovation’ lead within 

the GEF partnership (or within STAP) who can drive change and organise cross-functional 
efforts. 

• Run pilot projects using small grants to explore solutions, and, if these fail, integrate learning 
and move on.  Use these pilots to test novel organisational and/or funding models.  

• Develop standardised procedures to quickly evaluate and learn from pilots. 
• Report on progress frequently both within the UN system and to the outside world, not waiting 

for the next planning cycle, and use a variety of means, including social media venues, talks at 
conferences, and press releases.  

 
Leverage investment by others, particularly philanthropies, governments, and individuals, in areas 
where synergies exist. For instance, the GEF could explore how to leverage funds from investments to 
support the Sustainable Development Goals167, the Global Protein Challenge 2040168, or Earth Bank of 
Codes.169 The GEF could also explore areas where early investment could drive follow-on funding from 
foundations or others funders. For instance, some philanthropies are interested in how blockchain 
technologies could be applied to global development issues. Small, early investments by the GEF could 
validate funding by others.170  As mentioned earlier, the GEF should leverage its ability as a visible, 
international institution to ‘signal’ strategic intent to outside observers in ways that could engage new 
partners, align objectives between organisations, and leverage investments.   It could also explore 
emerging financing mechanisms such as crowdfunding, which is now estimated to account for $34 
billion in global investments, $25 million of which are peer-to-peer.171 

 
Support open source technologies and systems that can provide wide access and knowledge-sharing in 
developing countries and between the developed and developing worlds. As scholars have pointed out, 
“open source is a way of organising production, of making things jointly”172.  The GEF can support the 
creation of production platforms that can exploit ideas external and internal to the GEF as inputs into 
innovation and production processes around emerging technologies173. The rapidly expanding Do-It-
Yourself (DIY) movement is global and has created open source systems for knowledge and tool-sharing 
that can be applied to the creation of local solutions to local problems174.  Also, an explosion in citizen 
science activities has occurred over the past decade supported by better broadband communications, 
smart networked mobile platforms, inexpensive sensors, and cloud computing that has enabled citizens 
(citizens as sensors) to make important contributions to environmental health, biology, and 
epidemiology175.  This phenomenon is global and could be leveraged by the GEF.  
 



28 
 

Experiment with new organisational models. Transformational changes on the ground will be a result 
of the right combination of novel technologies and business models shaped by contextual 
understanding. The GEF should continually engage outsiders from industry and academia, along with 
people who have visceral and first-hand knowledge of what is needed on the ground in developing 
countries. Incremental changes are difficult to delegate, so the engagement of GEF leadership will be 
needed to shape and validate organisational experiments. 176 
 
Run experiments and pilot projects to test new organisational, leadership, and funding models. This 
builds on one of the key strategies of the GEF since its inception: to simulate experimentation and risk-
taking through piloting innovative approaches to deal with existing and emerging complex challenges 
facing the global environment. The real world is an expensive environment in which to run experiments, 
so these should be small, data-intensive, and well evaluated. One model is to use a lean start-up 
approach—a temporary organisation designed to search for repeatable and scalable models. This 
approach “favours experimentation over overelaborate planning, customer feedback over intuition, and 
iterative design over traditional ‘big design up front’ development.”177 The GEF could also explore the 
use of prizes and challenges to stimulate innovation, an approach that has received considerable public 
and private sector attention over the past decade. However, it is important to understand under what 
conditions such mechanisms work and recognise and address their downsides178. Tackling grand 
challenges requires more than just dedicated funding. This endeavour should be viewed as an open-
ended mission “concerning the socio-economic system as a whole,” even including strategies for system 
transformation, including social innovations.179 
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5. Appendix 
 
A. Summary of the Delphi Survey Demographics and Results 
 
The Environmental Law Institute and the Scientific and Technical Advisory Panel (STAP) of the Global 
Environmental Facility (GEF) partnered with The Millennium Project to collect information on “Novel 
Entities,” defined as things created and introduced into the environment by humans that could have a 
disruptive effect—positive or negative—on the global environment and the earth system in general.  
 
The Millennium Project, an independent non-profit founded in 1996 that connects futurists from across 
the world to improve global foresight, facilitated the first round of the Delphi survey.180  The existing 
expert network of the Millennium Project was expanded to include other experts recommended by the 
STAP and people interviewed for the project or identified through literature searches. 
 
The results presented here are the responses collected from experts during the first round of the Delphi 
process.181  Experts from a wide array of professional backgrounds, locations, ages, and affiliations 
submitted their responses to questions on novel entities via an online survey in November 2017. 
 
Round 1 of the Delphi Survey 
The first round of the survey included eight open-ended questions. The first six asked respondents to 
supply answers about which novel entities they thought should be included in the following categories: 
Biological Entities, Synthetic Chemical Entities, Radioactive Entities, Genetically Modified Organism 
Entities, Nanomaterial Entities, and Plastic-related Entities. The seventh question allowed respondents 
to supply any Novel Entities that might not fall into these categories. In each category, respondents 
were asked to provide answers in two different time frames: novel entities of interest between the 
present and the next five years, and novel entities of interest over the next five to fifteen years. An 
eighth question prompted respondents to provide any additional commentary they would like. 
 
The Round 1 Delphi received responses from 78 experts. These individuals hailed primarily from Europe 
and North America—34 and 24 respondents respectively. About 20% of respondents were from Latin 
America, Africa, West Asia, or Asia Pacific. Most of the respondents were between the ages of 36 and 
74.  
 
Suggested novel entities include:  
• New man-made virus or pathogen created, possibly through mistakes from biological 

hobbyist/DIYer, or intentionally as bio-weapon. 
• Biological engineering creates a new invasive species (with introduction into novel location and 

bio-region). 
• Creation of biological means to quickly eat waste. 
• Inexpensive and effective DNA barcoding to track products in supply chains or species. 
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• Discovery of entirely new biological organisms, such as pandoraviruses (discovered in 2013). 
• New genetically modified crops designed for disease/insect resistance, to withstand higher 

temperatures and greater drought conditions, increase yields, and/or provide greater nutritional 
benefits. 

• Cellular agriculture (plant and/or meat based) to provide protein with reduced environmental 
impacts. 

• Re-emergent diseases or novel organisms from melting permafrost or deep-sea mining. 
• Biological production of hydrogen. 
• Re-genesis of extinct animals or other biological organisms with unintended results. 
• Gene drives or other methods used to successfully control invasive species or vector-borne 

diseases. 
• The release of completely novel engineered synthetic organisms with no natural referent 
• 3-D printed organisms, replacement body parts, artificial blood, or other bio-materials. 
• Gene edits on humans for disease prevention or enhancement (novel traits). 
• Nano-scale agricultural applications such as crop nutrients, growth stimulants, pesticide delivery 

systems. 
• Nano-scale monitoring of human and other biological organisms at the molecular level.  
• Nanobots that can break down plastics or other pollutants.  
• Increased bioaccumulation of nanoparticles in consumer goods and industrial products pose 

health problems. 
• Discoveries of entirely new nano-scale materials, such as titanium sub-oxides.  
• Nanotechnologies dramatically improve the efficiency of batteries, solar cells, catalysts by 5-10x. 
• Nanoparticles are used to combat global warming effects, i.e., weather control (solar radiation 

management) and acidification of the oceans (fertilisation). 
• Nano pollinators. 
• Materials with programmable functions appear (can change colour, conductivity, optical 

characteristics, etc. in response to external stimuli). 
• Nano-scale additive manufacturing appears. 
• Fukushima like accidents. 
• Black market diversions of existing radioactive materials result in contamination. 
• Dirty bomb. 
• Nuclear exchange contaminates significant part of the Earth’s surface. 
• Early demonstrations of nuclear fusion provide clean energy path. 
• Chemicals used in fracking, underground sequestration of carbon, or used to change the viscosity 

of liquids for pumping cause environmental problems. 
• Nanomaterials such as graphene, nanotubes, nano-metal hybrids, may be found increasingly in 

industrial and consumer products. 
• Continued problems with endocrine disruptors. 
• Synthetic plastics in marine environment including new forms from 3-D printing and nano plastics 
• Chemicals used in geoengineering. 
• Nano-bio hybrid materials with novel properties and risks.  
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• Autonomous robots of plastic-eating organisms that clean up plastics. 
• New generations of bio-degradable plastics and plastic substitutes. 

 
Round 2 of the Delphi Survey 
The responses produced during the first Delphi round were then analysed and used to build the second 
round of the survey. In this round, respondents were asked to rate a selection of the novel entities that 
had been submitted to the first survey from 1 to 5 by relevance to the work of the GEF. 1 would indicate 
low relevance, and five would indicate high relevance.  
 
The survey instructions elaborated on what “relevance to the GEF” meant by providing the following: 
“The criteria for rating the relevance to the GEF are: the linkage between the identified entity and GEF’s 
work areas (biodiversity, climate change mitigation, land degradation, international waters, chemicals 
and waste, sustainable forest management, fisheries, food security, sustainable cities) and the extent to 
which the entity can affect the ability of the GEF to achieve its objectives, positively or negatively, both 
in the near- and long-term.” 
 
The survey further elaborated on what it might mean to bolster the ability of the GEF to “achieve its 
objectives” by explaining that “the 2020 vision for the GEF is to be a champion of the global 
environment, building on its role as a financial mechanism of several multilateral environmental 
conventions (MEAs), supporting transformational change, and delivering global environmental benefits 
on a larger scale. To achieve this vision, the GEF will do the following: Address the drivers of 
environmental degradation… Support innovative and scalable activities… [and] Deliver the highest 
impacts, cost-effectively.” 
 
In this survey, respondents were provided examples of novel entities from the following categories: 
Biological Entities, Nanotechnology Entities, Radioactive Material Entities, Synthetic Chemical Entities, 
and Additional Entities. The categories Genetically Modified Organism and Plastic-related Entities from 
the first round of the survey were folded into Biological Entities and Synthetic Chemical Entities, 
respectively.  
 
Within each of the above five categories, examples of novel entities were offered within two 
timeframes: novel entities of relevance between the present and the next five years, and novel entities 
of relevance over the next five to fifteen years.  
 
Respondents were given the opportunity to rank and to provide any explanatory commentary on each 
novel entity. Questions at the end of the survey also allowed respondents to provide any additional 
novel entities that had not been included in the survey and to provide any additional commentary. Once 
the survey was completed, a respondent was allowed to see others’ answers.  
 
Respondents from Round 2 
The Round 2 Delphi survey received responses from 62 experts. Most respondents marked that they 
were between the ages of 36 to 74. The respondents hailed from across the world. Europe received the 
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greatest representation with 19 respondents. 12 respondents were from Latin America or the 
Caribbean, ten were from Asia Pacific, nine were from North America, seven were from Africa, and one 
was from West Asia (Figure A1). 
 
The Round 2 survey also collected information on professional affiliations and background. Many 
respondents—26—were affiliated with universities or academia. 13 were with NGOs, 11 were 
independent of any affiliation, five were in business, and four were in government. Most respondents 
marked that their work aligned most closely with the social sciences. 
 

 
Figure 1. Regional representation of respondents to Round 2 of the Delphi. 

 
Highlights from Round 2 
Among those novel entities in the 5-year range, the following received mean ratings of 3.45 or higher 
for relevance to the work of the GEF: 

• New man-made virus or pathogen created, possibly through mistake from biological 
hobbyist/DIYer, or intentionally as bio-weapon. 

• Nanobots that can break down plastics or other pollutants.  
• Increased bioaccumulation of nanoparticles in consumer goods and industrial products pose 

health problems.  
• Discoveries of entirely new nanoscale materials, such as titanium sub-oxides. 
• Fukushima-like accidents.  
• Black market diversions of existing radioactive materials result in contamination.  
• Synthetic plastics in marine environment including new forms from 3-D printing and nano-

plastics.  
 
Among those novel entities in the 5-15 year range, the following received mean ratings of 3.5 or higher 
for relevance to the work of the GEF: 



33 
 

• New genetically modified crops designed for disease/insect resistance, to withstand higher 
temperatures and greater drought conditions, increase yields, and/or provide greater nutritional 
benefits.  

• Cellular agriculture (plant and/or meat based) to provide protein with reduced environmental 
impacts. 

• Gene drives or other methods used to successfully control invasive species or vector-borne 
diseases.  

• 3-D printed organisms, replacement body parts, artificial blood, or other bio-materials.  
• Nanotechnologies dramatically improve the efficiency of batteries, solar cells, catalysts by 5-10 

times.  
• New generations of bio-degradable plastics and plastic substitutes.  

 
Additional Novel Entities  
When provided the option to mention any additional novel entities that might have been left out of the 
survey, comments included the following:  

• Artificial Intelligence 
• Development of new industrial materials 
• Blockchain technologies 
• Geoengineering 

 
B. Experts Interviewed for this Project 
 
Science & Technology 

1. Honda Chen, PhD, National Program Leader for Bioprocess Engineering and 
Nanotechnology at National Institute of Food and Agriculture (NIFA), US Department of 
Agriculture [https://nifa.usda.gov/staff-contact/hongda-chen-phd] 

2. William Orts, PhD. Research Leader, Bioproducts, Western Regional Research Center. US 
Department of Agriculture [https://www.ars.usda.gov/people-locations/person?person-
id=4240]  

3. Tom Graedel, PhD. Professor Emeritus of Industrial Ecology and Chemistry, School of 
Forestry and Environmental Studies, Yale University 
[https://environment.yale.edu/profile/graedel/] 

4. Jason White, PhD. Vice Director, Department of Analytical Chemistry, The Connecticut 
Agricultural Experiment Station. 
[http://www.ct.gov/caes/cwp/view.asp?a=2812&q=345092] 

5. Mike Roco, PhD. Senior Advisor for Science and Engineering, National Science Foundation 
[https://nsf.gov/staff/staff_bio.jsp?lan=mroco] 

6. Barbara Harthorn, PhD. Professor of Anthropology; Director, NSF Center for 
Nanotechnology in Society; Group leader, NSF/EPA UC Center for Environmental 
Implications of Nanotechnology [http://www.cns.ucsb.edu/people/barbara-herr-
harthorn-0.html] 
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7. Michael Hochella, PhD.  Professor of Geosciences, Virginia Tech. 
[http://www.geochem.geos.vt.edu/hochella/hochella.html] 

8. Paul Anastas, PhD. Director, Center for Green Chemistry and Green Engineering, School of 
Forestry & Environmental Studies, Yale University. 
[http://ursula.chem.yale.edu/faculty/anastas.html] 

9. Julie Zimmerman, PhD. Associate Professor of Chemical & Environmental Engineering & 
Forestry & Environmental Studies, Yale University [http://seas.yale.edu/faculty-
research/faculty-directory/julie-zimmerman] 

10. Drew Endy, PhD. Associate Professor of Bioengineering, Stanford University 
[https://profiles.stanford.edu/drew-endy] 

 
Horizon Scanning 

11. Jonathan Peck, President and Senior Futurist, Institute for Alternative Futures 
[http://www.altfutures.org/about-iaf/futurists-and-associates/jonathan-peck/] 

12. James Goodman, Director of Futures & Projects, Forum for the Future, UK 
[https://www.forumforthefuture.org/siteusers/james-goodman] 

13. Evan Michelson, Director, Energy & Environment Program, Alfred P.  Sloan Foundation 
[https://sloan.org/about/staff/evan-s-michelson] 

14. Kevin O’Neil, Associate Director for Strategic Research, Rockefeller Foundation 
[https://www.rockefellerfoundation.org/people/kevin-oneil/] 

 
Social Entrepreneurship, Innovation 

15. Thane Kreiner, PhD. Executive Director, Miller Center for Social Entrepreneurship. Howard 
and Alida Charney University Professor of Science and Technology for Social Benefit, Santa 
Clara University [https://phonebook.scu.edu/Thane-Kreiner] 

16. Katharine Kreis, Director of Strategic Initiative for International Development, PATH 
[http://www.path.org/news/press-room/666/] 

 
Other 

17. John Cumbers, PhD Founder and CEO, SynbioBeta 
[https://synbiobeta.com/about/team/john-cumbers/] 

18. Isha Datar, CEO, New Harvest, [http://www.new-harvest.org/nh2016_isha_datar] 
19. Ginger Dosier, CEO, Bio Mason, [https://www.linkedin.com/in/ginger-krieg-dosier-

7281027/]  
20. Perumal Gandhi, Co-Founder, Perfect Day, [https://www.linkedin.com/in/perumal-gandhi-

83550488/]  
21. Byrne Stanton, PhD, Program Director, Gingko Bioworks 

[https://www.linkedin.com/in/brynne-stanton-98a399a7/]  
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