Lessons learned from addressing PFAS

PFAS background

- Synthetic, highly mobile, persistent chemicals
- 9,000+ different chemicals in family
- Categories include C8 ("long-chain" like PFOA and PFOS) and C6 ("short-chain" like PFHxA and PFHxS)
- Can be used to build polymers
- Valuable chemical properties include: oil, stain, grease, and water repellant; non-reactive and stable chemicals; decreased friction; heat resistant; durable
- Used in wide range of industrial and consumer product applications

PFAS in the environment

- Chemical properties of PFAS (mobile, persistent, stable) help it spread and accumulate
- Spread by water and air
- Research shows several potential human exposure pathways: drinking water, food, occupational hazards, dust, air, contact

PFAS and plastic: challenges in parallel

	Definitions	 Defined by a group of chemicals with shared characteristics rather than a singular chemical Example: PFOA vs. PFAS
	Breadth of uses	 Uses include consumer product, food contact surfaces, and industrial processes Implicates variety of industries in generation, use, and waste
Å.	Scientific knowledge	 Fast development of scientific knowledge on fate and transport and media Development of technology on testing Discovery of broad impacts
	International scope	International manufacturing, use, and waste disposal implications
٩ ا	Multimedia implications	 Implications across variety of media, including air, water, and biological Reflected in impacts and scientific findings

Federal

- Chemical production and use regulations (TSCA)
- Reporting regulations (TSCA, SDWA, EPCRA, CERCLA, CWA)
- Media regulations (CWA, CAA)
- Exposure prevention regulations (SDWA)
- Waste and cleanup regulations (RCRA, CERCLA)
- Whole of government approach (CPSC, FDA, DoD)

State

- Consumer product regulations
- Incorporation of federal standards across air and water
- Disposal regulations
- Purchase limitations

Lessons learned to be applied

- **Data collection** is a critical first step that can take place through many means
- Identification of **common indicators or proxies** can be a useful tool
- Existing authorities can provide a robust toolkit for regulation across a chemical's life cycle, particularly with a "whole of government approach"

