

Bureau of Clean Water

Data Collection

Suspended off bottom in high

deposition environment

- Few long-term continuous sites
- No telemetry

- Unique deployments
- Middle channel measurements

Lots of Sites

QA/QC Requirements

- Regular fouling and calibration checks
- Discrete readings with independent meter
- Corrections and removal of "bad" data
- Cross-section transects to ensure data are representative.

Uses of Continuous Data

- Characterize background/historic conditions
- Cause and effect studies
- Assessments using established ALU and PWS criteria
- Cause determinations
 - Eutrophication
 - Temperature modification

Water Quality Standards

§93.7(a), Table 3

- pH: 6.0 9.0 units
- Dissolved Oxygen:
 - Instantaneous minimums (5.0 mg/L or higher)
 - 7-day average (5.5 mg/L or higher)

Model-derived parameters

- Examples: osmotic pressure (ALU), TDS (PWS)
- Account for uncertainty in model

99% Rule

§96.3(c): "[criteria] shall be achieved in all surface waters at least 99% of the time"

Discrete samples

- Sample represents 1 day
- 4 samples = exceedance (4 days / 365 days = 1.1%)

99% Rule

- Criteria are protective of all aquatic life, not just macros
- Macros are not always the most sensitive organisms

Applying 99% rule over one year has greatest consistency with biology.

Count Exceedances

99% with CIM

$$\%Y=100\left[\frac{n*i}{k}\right]$$

Interval	# Readings > 1% of Year
15 min	351
30 min	176
60 min	88

Critical Periods

Open canopy vs closed
Pre- vs post-leaf emergence

Solubility of oxygen

Moderates conditions

Scour of photosynthetic organisms

Annual Variation

Summer Discharge of Susquehanna River at Harrisburg 2013-16

Source: USGS Station 01570500

PROTECTION

Model-Derived Parameters

- **USGS** guidelines
- Discrete samples
 - Over-top of sonde
 - Cover range of values
- Site specific

Probability of Digression

> 90%

Delineating Spatial Extent

DEPARTMENT OF ENVIRONMENTAL

Delineating Spatial Extent

Delineating Spatial Extent – Non-Mixed Rivers

Eutrophication Cause Determination

- Diel DO Swings
- Region- and season-specific benchmarks
- Currently for small streams only (50 mi²) but future expansion up to 500 mi²
- Spatial delineation supported by discrete DO readings and N/P grabs

Temperature Modification Cause Determination

- Determination centered around fish community data
- Thermal Fish Index (TFI) assessment
 - Thermal preference of fish species
 - Response to habitat degradation and water quality in addition to temperature modification
- Continuous temperature, discrete water chemistry, and habitat evaluations all collected to determine cause of changes to TFI scores

Questions or Comments

Bureau of Clean Water Division of Water Quality

Mark Hoger (717) 783-7573 mhoger@pa.gov

Finalized continuous data available at:

https://padep.aquaticinformatics.net/AQWebPortal

Protocols and methods can be found in Pennsylvania's Monitoring and Assessment books at: https://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/