

New Mexico and the assessment of continuous monitoring data

- Introduction: Assessments using continuous monitoring data in New Mexico:
 - 303(d)/305(b) assessment questions
 - Critical time periods
 - Parameters collected for assessments
- Assessment Protocols in New Mexico
- Continuous monitoring data case study: Temperature criteria and assessment
 - Data processing challenges and solutions
 - Macro-enabled template spreadsheet with VBA scripts for QA/QC
- Database management and final assessment determinations
 - Data "flow" and future improvements
- Wrap up: Contact information and questions

Assessments using continuous monitoring data

- □ 303(d)/305(b) assessment using continuous data:
 - Temperature impairments > numeric standards (most common)
 - Nutrient and DO impairments -> numeric and narrative standards (very common)
 - pH, turbidity and specific conductance impairments -> numeric and narrative standards (least common)
- Critical time period is assessment focus:
 - Temperature captures yearly maxima (summer)
 - Nutrients and DO growing season
 - pH, specific conductance, and turbidity –no specific time period
 - Pros: "growing season" most indicative of pollutants entering water body, most designated uses utilized due to adequate flows
 - Cons: Low-flow winter periods still important for many designated uses

Continuous Monitoring Data Collection

- Temporary deployment of multiparameter sondes, temperature and other dataloggers 2 weeks
 6 months
- Temperature
- Turbidity
- Dissolved Oxygen
- □ pH
- Specific Conductance

Multiparameter sonde deployment using rebar anchor (Pecos River)

Comprehensive Assessment and Listing Methodology

- Assessment Protocols: "CALM"
- Appendices contain
 parameter-specific listing
 methodologies for long term deployment (LTD)
 data or "large datasets"
- Translate narrative standards for assessment
- Requirements for continuous data to assess for some aquatic life uses in streams and rivers

COMPREHENSIVE ASSESSMENT AND LISTING METHODOLOGY (CALM):

PROCEDURES FOR ASSESSING WATER QUALITY STANDARDS ATTAINMENT FOR THE STATE OF NEW MEXICO CWA §303(d) /§305(b) INTEGRATED REPORT

NEW MEXICO ENVIRONMENT DEPARTMENT SURFACE WATER QUALITY BUREAU

AUGUST 18, 2021

Appendices

G

- A Data Quality Tables
- 3 Temperature Listing Methodology
- C Nutrient Listing Methodology for Wadeable Perennial Streams
- D Nutrient Listing Methodology for Lakes and Reservoirs
- Large Dissolved Oxygen Dataset Listing Methodology
- F Large pH Dataset Listing Methodology
 - Sedimentation/Siltation Listing Methodology for Wadeable Perennial Streams
- H Turbidity Listing Methodology for Coldwater Perennial Streams and Rivers
- Integrated Reporting Category 4b Protocol

Continuous Monitoring Data Collection

Require continuous data component to assess for

aquatic life use in streams and rivers:

- Temperature
 - □ Index period: late May-September
- Turbidity
- □ pH
- Dissolved Oxygen
- □ Nutrients 24-hour Delta-DO
 - Index period: ecoregional growing season

Temperature criteria and assessment

- River/stream temperature: 4T3, 6T3, and maximum temperature standards based on Aquatic Life Use
- Determination of nonsupport made if:
 - Measured 4T3 or 6T3applicable temperature criteria
 - Maximum allowable temperature exceeded on more than one day in same calendar year (excluding outliers)
 - Require continuous data to calculate

Table 1. New Mexico's temperature criteria by ALU (from 20.6.4.900 (H) NMAC)

AQUATIC LIFE USE	MAXIMUM TEMPERATURE (°C)	4T3 ^(a) (°C)	6T3 ^(a) (°C)
High Quality Coldwater (HQCWAL)	23	20	
Coldwater (CWAL)	24		20
Marginal Coldwater (MCWAL)	29		25 ^(b)
Coolwater (CoolWAL)	29		
Warmwater (WWAL)	32.2		
Marginal Warmwater (MWWAL)	Routinely exceeds 32.2 ^(c)		
Limited	No default established		

Temperature criteria and assessment

- Long-term thermograph datasets needed to fully assess
 - Capture period of seasonal maximum water temperature
 - Plotted data show ascending and descending "limbs" of thermograph
- Grab data non-support only
 - Need long-term data to confirm impairment determination prior to TMDL (IR Cat 5C)

Figure 1. Example of assessable dataset for full support determination (adequate duration and includes summer season maximum temperature less than applicable maximum criterion of 23°C for high quality coldwater aquatic life use)

Figure 2. Example of assessable dataset for non-support determination *only* (applicable segment-specific maximum criterion of 28°C is exceeded on more than one day in this limited duration dataset)

Temperature criteria and assessment

- Loggers used: Hobo WTP or Tidbit (where stream drying and logger exposure suspected)
- A typical two-year watershed survey will result in 80-140 temperature logger deployments
- Lots of data efficient processing, QA/QC and upload method needed

Processing temperature data

Main challenges:

- Time intensive "processing" data for upload and assessment—including cleaning up, cropping, QA process
- Determining whether logger data is representative of ambient conditions (and thus assessable):
 - Submerged in area with adequate flow for duration of data recording period
 - Not buried in sediment, covered with debris, or exposed
 - Data with these characteristics, or otherwise not indicative of ambient conditions are not used for assessment

Continuous monitoring data management

Solution: Macro-enabled template spreadsheet with VBA scripts for importing time series, QA/QC, drift correction, calculating statistics for assessment, formatting for database upload

Data QA/QC

- "QC LTD data" creates graphs with QC features and scans for statistical outliers
- Outliers (temps >75th %tile of measured daily maximum temps +3x IQR)
 - Highlighted, manually reviewed/censored
 - Intended to:
 - reduce influence from autocorrelation of continuous data (independence)
 - demonstrate repeatability of an observation
 - consider potential anomalies in dataset due to extreme air temperatures deviating from seasonal norms/other anomalous events such as runoff from catastrophic fire areas, or instrument errors
 - Data not representative of ambient conditions and non-assessable data are omitted from calculations to generate final assessment dataset

Data QA/QC (continued)

- "Charts" tab displays thermograph (top, blue) along with the absolute 1 hr. temperature difference (bottom, purple)
- Often, exposure indicated by >3 degree C change in temperature within an hour or less
- Data qualifier of "RT" (rejected temperature) added, graph displays rejected data in yellow, data not included in any assessment statistics

Data QA/QC (continued)

Drift Correction Tool

Data management and assessment

LTD template "save/create upload" macro
creates upload file in .csv file format with
QA/QC'ed dataset, summary statistics and
information needed for assessment

- Archive raw and processed files on server
- Processed upload file uploaded into database
- Database can generate "LTD Assessment Report" spreadsheet

TEMP_WQC	Temp Max > Temp WQC? 🔟
23	Yes - check file
23	Yes - check file
25	Yes - check file
25	N
25	N
25	N
25	Yes - check file
Y	

- Water Quality Standards criteria (WQC) updated in database each assessment cycle as needed
- Must check upload data file to confirm 4T3/6T3 exceedances and to determine if Tmax exceeded criteria on more than one day
- Future improvements: program spreadsheet functions into the database, skip the Excel step

Temperature assessment flow

16

Meredith Zeigler

303(d)/305(b) Assessment Coordinator- Monitoring, Assessment and Standards Section (505) 490-5866

meredith.zeigler@state.nm.us

https://www.env.nm.gov/surface-water-quality/303d-305b/

Heidi Henderson

(Acting) Program Manager - Monitoring, Assessment and Standards Section TMDL and Assessment Team Supervisor (505) 819-9986 heidi.henderson@state.nm.us

New Mexico Environment Department Surface Water Quality Bureau

1190 South Saint Francis Dr. Santa Fe, NM 87505

www.env.nm.gov/surface-water-quality/